
COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

CHART Release 8

Detailed Design
Revision 2

Contract SHA-06-CHART

 Document # WO23-DS-001

 Work Order 23, Deliverable 4

 August 1, 2011

 By

 CSC

CHART R8 Detailed Design Rev 2 ii 08/01/2011

Revision Description Pages Affected Date
0 Initial Release All 5/23/2011

1 Changes based on comments made

from MdTA review

4-9, 5-9 6/02/2011

2 Changes based on results of HAR field

testing.

2-24, 3-1, 4-4, 4-9, 4-15, 5-4, 5-8, 5-

9, 5-10, 5-13, 8-149, 8-155, 8-159

8/01/2011

CHART R8 Detailed Design Rev 2 iii 08/01/2011

Table of Contents

1 Introduction ... 1-1

1.1 Purpose ... 1-1

1.2 Objectives ... 1-1

1.3 Scope ... 1-1

1.4 Design Process .. 1-1

1.5 Design Tools ... 1-2

1.6 Work Products ... 1-2

2 Architecture .. 2-1

2.1 Network/Hardware .. 2-1

2.2 Software .. 2-1

2.2.1 COTS Products .. 2-1

2.2.1.1 CHART ...2-1
2.2.1.2 Mapping ..2-4

2.2.2 Deployment /Interface Compatibility .. 2-4

2.2.2.1 CHART ...2-4
2.2.2.2 Mapping ..2-7

2.3 Security ... 2-7

2.4 Data ... 2-7

2.4.1 Data Storage... 2-8

2.4.1.1 Database ..2-8
2.4.1.2 CHART Flat Files ...2-28

2.4.2 Database Design .. 2-30

2.4.2.1 HAR and SHAZAM ...2-30

3 Key Design Concepts ... 3-1

3.1 IP HAR ... 3-1

3.2 IP SHAZAM ... 3-2

3.3 Error Processing .. 3-3

3.4 Packaging ... 3-3

3.4.1 CHART .. 3-3

3.4.2 Mapping ... 3-4

3.5 Assumptions and Constraints ... 3-4

4 Use Cases – IP HAR and IP SHAZAM .. 4-1

4.1 CHART ... 4-1

4.1.1 Configure HAR (Use Case Diagram) .. 4-1

4.1.1.1 Add HAR (Use Case) ...4-2
4.1.1.2 Add SHAZAM (Use Case) ...4-2
4.1.1.3 Administrator (Actor) ...4-3

CHART R8 Detailed Design Rev 2 iv 08/01/2011

4.1.1.4 Change SHAZAM Model (Use Case) ..4-3
4.1.1.5 Configure HWG-ER02a SHAZAM (Use Case) ..4-3
4.1.1.6 Remove HAR (Use Case) ...4-3
4.1.1.7 Remove SHAZAM (Use Case) ...4-3
4.1.1.8 Set Alert and Notification Settings (Use Case) ..4-3
4.1.1.9 Set DR1500 Hardware Failure Detection Settings (Use Case) ...4-3
4.1.1.10 Set HAR Communication Settings (Use Case) ...4-4
4.1.1.11 Set HAR Configuration (Use Case) ..4-4
4.1.1.12 Set SHAZAM Communication Settings (Use Case)..4-4
4.1.1.13 Set SHAZAM Configuration (Use Case) ..4-4
4.1.1.14 Set TCPIP Communication Settings (Use Case) ...4-5
4.1.1.15 Set Telephony Communication Settings (Use Case) ..4-5

4.1.2 ControlHAR (Use Case Diagram) ... 4-5

4.1.2.1 Activate SHAZAM (Use Case) ..4-7
4.1.2.2 Blank HAR (Use Case) ...4-7
4.1.2.3 Check For Banned Words (Use Case) ...4-7
4.1.2.4 Deactivate SHAZAM (Use Case) ...4-7
4.1.2.5 Edit Default HAR Clip (Use Case) ...4-8
4.1.2.6 Evaluate HAR Device Queue Entries (Use Case) ...4-8
4.1.2.7 Format HAR Message (Use Case) ..4-8
4.1.2.8 Listen To HAR Message (Use Case) ...4-9
4.1.2.9 Maintain HAR State (Use Case) ...4-9
4.1.2.10 Monitor HAR Message (Use Case) ..4-9
4.1.2.11 Operator (Actor) ...4-9
4.1.2.12 Poll DR1500 HAR (Use Case) ...4-9
4.1.2.13 Put HAR in Maintenance Mode (Use Case) ..4-10
4.1.2.14 Put HAR Online (Use Case) ...4-10
4.1.2.15 Put SHAZAM in Maintenance Mode (Use Case) ..4-10
4.1.2.16 Put SHAZAM Online (Use Case) ...4-10
4.1.2.17 Record audio HAR Message (Use Case) ..4-10
4.1.2.18 Reset HAR (Use Case) ...4-11
4.1.2.19 Reset HWGER02a SHAZAM to Last Known State (Use Case) ..4-11
4.1.2.20 Reset SHAZAM to Last Known State (Use Case) ..4-11
4.1.2.21 Set HAR Message (Use Case) ..4-11
4.1.2.22 Setup HAR (Use Case) ...4-12
4.1.2.23 System (Actor) ..4-12
4.1.2.24 Take HAR Offline (Use Case) ..4-12
4.1.2.25 Take SHAZAM Offline (Use Case)..4-12
4.1.2.26 Turn Off HAR Transmitter (Use Case) ...4-13
4.1.2.27 Turn On HAR Transmitter (Use Case) ...4-13
4.1.2.28 Update HAR Message DateTime (Use Case) ..4-13
4.1.2.29 UseDMSAsSHAZAM (Use Case) ..4-13
4.1.2.30 View HAR Slot Usage (Use Case) ...4-13

4.1.3 ViewHARandSHAZAM (Use Case Diagram) .. 4-13

4.1.3.1 Filter List (Use Case) ..4-14
4.1.3.2 Operator (Actor) ...4-14
4.1.3.3 Select List Columns (Use Case) ...4-15
4.1.3.4 Sort List (Use Case) ..4-15
4.1.3.5 View HAR Details (Use Case) ...4-15
4.1.3.6 View HAR List (Use Case)...4-16
4.1.3.7 View SHAZAM Details (Use Case) ..4-16
4.1.3.8 View SHAZAM List (Use Case) ..4-16

5 Detailed Design – IP HAR and IP SHAZAM 5-1

CHART R8 Detailed Design Rev 2 v 08/01/2011

5.1 Human-Machine Interface .. 5-1

5.1.1 HAR ... 5-1

5.1.1.1 Add HIS DR1500 HAR ..5-1
5.1.1.2 HAR Details ..5-6
5.1.1.3 Edit Control Line Communication Settings ..5-11
5.1.1.4 Edit DR1500 Hardware Failure Detection Settings ..5-12
5.1.1.5 Edit Alert and Notification Settings ..5-13

5.1.2 SHAZAM .. 5-15

5.1.2.1 Add SHAZAM ..5-15
5.1.2.2 SHAZAM Details ...5-18
5.1.2.3 Edit Model ..5-20
5.1.2.4 Edit Basic Configuration...5-21
5.1.2.5 Edit Communications Settings ..5-22
5.1.2.6 Edit Alerts and Notifications Settings ...5-23

5.2 System Interfaces ... 5-1

5.2.1 Class Diagrams .. 5-1

5.2.1.1 AlertManagement (Class Diagram) ..5-1
5.2.1.2 HARControl (Class Diagram) ...5-7
5.2.1.3 DeviceManagement (Class Diagram) ...5-15
5.2.1.4 HARControlDR1500 (Class Diagram) ...5-20
5.2.1.5 HARNotification (Class Diagram)..5-23

5.2.2 Sequence Diagrams.. 5-28

5.3 Audio Common .. 5-29

5.3.1 Class Diagrams .. 5-29

5.3.1.1 AudioCommonClasses (Class Diagram) ..5-29

5.3.2 Sequence Diagrams.. 5-31

5.3.2.1 AudioCommonClasses:ConvertAudioClip (Sequence Diagram) ...5-31

5.4 Device Utility .. 5-32

5.4.1 Class Diagrams .. 5-32

5.4.1.1 DeviceUtility (Class Diagram) ...5-32
5.4.1.2 PortLocatorClasses (Class Diagram) ..5-37

5.4.2 Sequence Diagrams.. 5-41

5.4.2.1 AlertAndNotificationHelper:notifyAndAlert (Sequence Diagram) ..5-41

5.5 HAR Control .. 5-42

5.5.1 Class Diagrams .. 5-42

5.5.1.1 HARControlModule (Class Diagram) ..5-42
5.5.1.2 HARControlModule2 (Class Diagram) ..5-52
5.5.1.3 HARQueueableCommandClassDiagram (Class Diagram) ...5-58

5.5.2 Sequence Diagrams.. 5-62

5.5.2.1 HARControlModule:PollHarInBackground (Sequence Diagram) ...5-62
5.5.2.2 HARControlModule:fmsGetConnectedPort (Sequence Diagram) ...5-62
5.5.2.3 HARControlModule:fmsReleasePort (Sequence Diagram) ..5-64
5.5.2.4 HARControlModule:pollHARs (Sequence Diagram) ..5-64
5.5.2.5 HARControlModule:processPollResults (Sequence Diagram)...5-65
5.5.2.6 HARControlModule:slotMgrStore (Sequence Diagram) ..5-66
5.5.2.7 HARControlModule:DBdeleteHAR (Sequence Diagram) ...5-67

5.6 HAR Protocols ... 5-69

5.6.1 Class Diagrams .. 5-69

CHART R8 Detailed Design Rev 2 vi 08/01/2011

5.6.1.1 HARProtocolsPkg (Class Diagram)..5-69

5.6.2 Sequence Diagrams.. 5-72

5.6.2.1 AP55AndDR1500HARCommand:getByteCommand (Sequence Diagram)5-72
5.6.2.2 AP55AndDR1500HARCommand:getDTMFCommand (Sequence Diagram)5-72
5.6.2.3 AP55AndDR1500HARCommand:parseLastCommandTimeStampFromResponse (Sequence

Diagram) 5-73
5.6.2.4 HISDR1500ProtocolHdlr:BroadcastSlots (Sequence Diagram) ...5-74
5.6.2.5 HISDR1500ProtocolHdlr:getHARModeAndSubMode (Sequence Diagram)5-75
5.6.2.6 HISDR1500ProtocolHdlr:getLastCmdTimeStamp (Sequence Diagram)5-76
5.6.2.7 HISDR1500ProtocolHdlr:getStatus (Sequence Diagram) ..5-77
5.6.2.8 HISDR1500ProtocolHdlr:getSystemStatus (Sequence Diagram) ...5-78
5.6.2.9 HISDR1500ProtocolHdlr:getTransmitterMode (Sequence Diagram) ..5-79
5.6.2.10 HISDR1500ProtocolHdlr:getTransmitterStatus (Sequence Diagram)5-80
5.6.2.11 HISDR1500ProtocolHdlr:reclaimMemory (Sequence Diagram) ...5-80
5.6.2.12 HISDR1500ProtocolHdlr:recordMessage (Sequence Diagram) ...5-81
5.6.2.13 HISDR1500ProtocolHdlr:sendSerialDataToHAR (Sequence Diagram)5-82
5.6.2.14 HISDR1500ProtocoldHdlr:parseByteResponse (Sequence Diagram)5-83
5.6.2.15 HISDR1500Protocolhdlr:getHARVersionInformation (Sequence Diagram)5-84

5.7 SHAZAM Control Module ... 5-85

5.7.1 Class Diagrams .. 5-85

5.7.1.1 SHAZAMControl (Class Diagram) ..5-85

5.7.2 Sequence Diagrams.. 5-96

5.7.2.1 SHAZAMControlModule:RefreshSHAZAMInBackground (Sequence Diagram)5-96
5.7.2.2 SHAZAMControlModule:changeModelType (Sequence Diagram) ..5-97
5.7.2.3 SHAZAMControlModule:createSHAZAM (Sequence Diagram) ..5-99
5.7.2.4 SHAZAMControlModule:getConfiguration (Sequence Diagram) ...5-99
5.7.2.5 SHAZAMControlModule:getStatus (Sequence Diagram) .. 5-100
5.7.2.6 SHAZAMControlModule:handleOpStatus (Sequence Diagram) ... 5-101
5.7.2.7 SHAZAMControlModule:refreshImpl (Sequence Diagram) .. 5-104
5.7.2.8 SHAZAMControlModule:setBeaconStateForModel_HWGER02A (Sequence Diagram) 5-104
5.7.2.9 SHAZAMControlModule:setBeaconStateForModel_VikingRC2A (Sequence Diagram) 5-105
5.7.2.10 SHAZAMControlModule:setBeaconsState (Sequence Diagram) .. 5-107
5.7.2.11 SHAZAMControlModule:setConfiguration (Sequence Diagram) ... 5-109
5.7.2.12 SHAZAMControlModule:updateNow (Sequence Diagram) .. 5-110
5.7.2.13 SHAZAMControlModule:remove (Sequence Diagram) .. 5-110

5.8 SHAZAM Protocols ... 5-112

5.8.1 Class Diagrams .. 5-112

5.8.1.1 SHAZAMProtocolsPkg (Class Diagram) ... 5-112

5.9 chartlite.data.har ... 5-114

5.9.1 Class Diagrams .. 5-114

5.9.1.1 GUIHARDataClasses (Class Diagram) .. 5-114

5.10 chartlite.data.shazam... 5-119

5.10.1 Class Diagrams .. 5-119

5.10.1.1 GUIShazamClasses (Class Diagram) .. 5-119

5.11 chartlite.servlet.har .. 5-123

5.11.1 Class Diagrams .. 5-123

5.11.1.1 GUIHARServletClasses (Class Diagram) .. 5-123

5.11.2 Sequence Diagrams.. 5-126

5.11.2.1 AddDR1500HARFormData:parseFormData (Sequence Diagram) .. 5-126

CHART R8 Detailed Design Rev 2 vii 08/01/2011

5.11.2.2 DR1500HARReqHdlr:processEditDR1500HARCtrlSettings (Sequence Diagram) 5-126
5.11.2.3 DR1500HARReqHdlr:processEditDR1500HARHardwareFailureSettings (Sequence Diagram)5-127
5.11.2.4 DR1500HARReqHdlr:processPollHARNow (Sequence Diagram) 5-128
5.11.2.5 DR1500HarReqHdlr:parseHardwareFailureSettings (Sequence Diagram) 5-129

5.12 chartlite.servlet.shazam ... 5-129

5.12.1 Class Diagrams .. 5-129

5.12.1.1 GUISHAZAMServletClasses (Class Diagram) .. 5-129

5.12.2 Sequence Diagrams.. 5-132

5.12.2.1 SHAZAMReqHdlr:getAddSHAZAMForm (Sequence Diagram) .. 5-132
5.12.2.2 SHAZAMReqHdlr:processAddSHAZAM (Sequence Diagram) ... 5-134
5.12.2.3 SHAZAMReqHdlr:processChangeSHAZAMModel (Sequence Diagram) 5-135
5.12.2.4 SHAZAMReqHdlr:processEditCommsConfig (Sequence Diagram) 5-136
5.12.2.5 SHAZAMReqHdlr:processSetAlertAndNotificationSettings (Sequence Diagram) 5-138

5.13 chartlite utilities ... 5-139

5.13.1 Class Diagrams .. 5-139

5.13.1.1 chartlite.util_classes (Class Diagram) ... 5-139

6 Deprecated Functionalities .. 6-141

7 Exporter Changes ... 7-141

8 Mapping To Requirements ... 8-143

9 Acronyms/Glossary .. 9-1

CHART R8 Detailed Design Rev 2 viii 08/01/2011

Table of Figures
Figure 2-1 CHART and External Interfaces .. 2-5
Figure 2-2 R8 Server Deployment ... 2-6
Figure 2-3 R8 GUI Deployment .. 2-7
Figure 2-4 R8 ERD .. 2-22
Figure 4-1. ConfigureHAR (Use Case Diagram) .. 4-2
Figure 4-2. ControlHAR (Use Case Diagram) .. 4-6
Figure 4-3. ViewHARandSHAZAM (Use Case Diagram) ... 4-14
Figure 5-1 Add HIS DR1500 HAR Link ... 5-1
Figure 5-2 Add HAR - General HAR Information .. 5-2
Figure 5-3 Add HAR - Location .. 5-2
Figure 5-4 Add HAR - Default Clips... 5-2
Figure 5-5 Add HAR - Device Control Communications, Telephony .. 5-3
Figure 5-6 Add HAR - Device Control Communications, TCP/IP ... 5-3
Figure 5-7 Add HAR - Associated Message Notifiers .. 5-4
Figure 5-8 Add HAR - DR1500 Hardware Failure Detection Settings ... 5-4
Figure 5-9 Add HAR - Alert and Notification Settings ... 5-5
Figure 5-10 Add HAR - Site Selection .. 5-5
Figure 5-11 HAR Details - Actions ... 5-6
Figure 5-12 HAR Details - Message.. 5-6
Figure 5-13 HAR Details - Used By .. 5-7
Figure 5-14 HAR Details - Associated Message Notifiers .. 5-7
Figure 5-15 HAR Details - Status .. 5-8
Figure 5-16 HAR Details - Clips Stored in HAR .. 5-9
Figure 5-17 HAR Details - Recording Capacity Status ... 5-9
Figure 5-18 HAR Details - Configuration ... 5-10
Figure 5-19 HAR Details - Edit Control Line Communication Settings Link ... 5-11
Figure 5-20 Edit HAR Control Line Settings Form, Telephony .. 5-11
Figure 5-21 Edit HAR Control Line Settings Form, TCP/IP ... 5-12
Figure 5-22 Edit DR1500 Hardware Failure Detection Settings Link ... 5-12
Figure 5-23 Edit DR1500 Hardware Failure Detection Settings Form .. 5-13
Figure 5-24 Edit HAR Alerts and Notifications Link .. 5-13
Figure 5-25 Edit HAR Alert and Notification Settings Form .. 5-14
Figure 5-26 Add SHAZAM Link .. 5-15
Figure 5-27 Add SHAZAM - General SHAZAM Information ... 5-15
Figure 5-28 Add SHAZAM - Location ... 5-16
Figure 5-29 Add SHAZAM - Device Communications, Telephony ... 5-16
Figure 5-30 Add SHAZAM - Device Communications, TCP/IP .. 5-17
Figure 5-31 Add SHAZAM - Site Selection ... 5-17
Figure 5-32 SHAZAM Details - Actions, Online .. 5-18
Figure 5-33 SHAZAM Details - Actions, Maint Mode ... 5-18
Figure 5-34 SHAZAM Details, Configuration .. 5-20
Figure 5-35 SHAZAM Change Model Link .. 5-20
Figure 5-36 SHAZAM Change Model Type Form ... 5-21
Figure 5-37 SHAZAM Edit Basic Configuration Link ... 5-21
Figure 5-38 SHAZAM Edit Basic Settings Form .. 5-22
Figure 5-39 SHAZAM Edit Comm Settings Form .. 5-23
Figure 5-40 SHAZAM Alert and Notification Settings Form ... 5-24
Figure 5-41. AlertManagement (Class Diagram) .. 5-2
Figure 5-42. HARControl (Class Diagram) ... 5-8
Figure 5-43. DeviceManagement (Class Diagram) ... 5-15
Figure 5-44. HARControlDR1500 (Class Diagram) ... 5-20
Figure 5-45. HARNotification (Class Diagram) .. 5-24
Figure 5-46. AudioCommonClasses (Class Diagram) ... 5-29
Figure 5-47 AudioCommonClasses:ConvertAudioClip (Sequence Diagram) .. 5-31

CHART R8 Detailed Design Rev 2 ix 08/01/2011

Figure 5-48. DeviceUtility (Class Diagram) .. 5-33
Figure 5-49. PortLocatorClasses (Class Diagram) .. 5-37
Figure 5-50. AlertAndNotificationHelper:notifyAndAlert (Sequence Diagram) .. 5-41
Figure 5-51 HARControlModule (Class Diagram) ... 5-43
Figure 5-52. HARControlModule2 (Class Diagram) .. 5-53
Figure 5-53. HARQueueableCommandClassDiagram (Class Diagram) ... 5-58
Figure 5-54. HARControlModule:PollHarInBackground (Sequence Diagram) .. 5-62
Figure 5-55. HARControlModule:fmsGetConnectedPort (Sequence Diagram) ... 5-63
Figure 5-56. HARControlModule:fmsReleasePort (Sequence Diagram) .. 5-64
Figure 5-57. HARControlModule:pollHARs (Sequence Diagram) ... 5-65
Figure 5-58. HARControlModule:processPollResults (Sequence Diagram) ... 5-66
Figure 5-59. HARControlModule:slotMgrStore (Sequence Diagram) .. 5-67
Figure 5-60 HARControlModule:DBdeleteHAR (Sequence Diagram) .. 5-68
Figure 5-61 HARProtocolsPkg (Class Diagram) ... 5-70
Figure 5-62 AP55AndDR1500HARCommand:getByteCommand (Sequence Diagram) 5-72
Figure 5-63. AP55AndDR1500HARCommand:getDTMFCommand (Sequence Diagram) 5-73
Figure 5-64. AP55AndDR1500HARCommand:parseLastCommandTimeStampFromResponse (Sequence Diagram)

 ... 5-74
Figure 5-65. HISDR1500ProtocolHdlr:BroadcastSlots (Sequence Diagram) ... 5-75
Figure 5-66. HISDR1500ProtocolHdlr:getHARModeAndSubMode (Sequence Diagram) 5-76
Figure 5-67. HISDR1500ProtocolHdlr:getLastCmdTimeStamp (Sequence Diagram) ... 5-77
Figure 5-68. HISDR1500ProtocolHdlr:getStatus (Sequence Diagram) .. 5-78
Figure 5-69. HISDR1500ProtocolHdlr:getSystemStatus (Sequence Diagram) ... 5-79
Figure 5-70. HISDR1500ProtocolHdlr:getTransmitterMode (Sequence Diagram) .. 5-79
Figure 5-71. HISDR1500ProtocolHdlr:getTransmitterStatus (Sequence Diagram) .. 5-80
Figure 5-72. HISDR1500ProtocolHdlr:reclaimMemory (Sequence Diagram) ... 5-81
Figure 5-73. HISDR1500ProtocolHdlr:recordMessage (Sequence Diagram) ... 5-82
Figure 5-74. HISDR1500ProtocolHdlr:sendSerialDataToHAR (Sequence Diagram) .. 5-83
Figure 5-75. HISDR1500ProtocoldHdlr:parseByteResponse (Sequence Diagram) .. 5-84
Figure 5-76. HISDR1500Protocolhdlr:getHARVersionInformation (Sequence Diagram) 5-85
Figure 5-77. SHAZAMControl (Class Diagram) .. 5-86
Figure 5-78. SHAZAMControlModule:RefreshSHAZAMInBackground (Sequence Diagram) 5-97
Figure 5-79. SHAZAMControlModule:changeModelType (Sequence Diagram) ... 5-98
Figure 5-80. SHAZAMControlModule:createSHAZAM (Sequence Diagram) .. 5-99
Figure 5-81. SHAZAMControlModule:getConfiguration (Sequence Diagram) ... 5-100
Figure 5-82. SHAZAMControlModule:getStatus (Sequence Diagram) .. 5-101
Figure 5-83. SHAZAMControlModule:handleOpStatus (Sequence Diagram) ... 5-103
Figure 5-84. SHAZAMControlModule:refreshImpl (Sequence Diagram) .. 5-104
Figure 5-85. SHAZAMControlModule:setBeaconStateForModel_HWGER02A (Sequence Diagram) 5-105
Figure 5-86. SHAZAMControlModule:setBeaconStateForModel_VikingRC2A (Sequence Diagram) 5-106
Figure 5-87. SHAZAMControlModule:setBeaconsState (Sequence Diagram)... 5-108
Figure 5-88. SHAZAMControlModule:setConfiguration (Sequence Diagram) .. 5-109
Figure 5-89. SHAZAMControlModule:updateNow (Sequence Diagram) .. 5-110
Figure 5-90 SHAZAMControlModule:remove (Sequence Diagram) ... 5-111
Figure 5-91. SHAZAMProtocolsPkg (Class Diagram) ... 5-112
Figure 5-92. GUIHARDataClasses (Class Diagram) .. 5-114
Figure 5-93. GUIShazamClasses (Class Diagram) .. 5-119
Figure 5-94. GUIHARServletClasses (Class Diagram) ... 5-123
Figure 5-95. AddDR1500HARFormData:parseFormData (Sequence Diagram) .. 5-126
Figure 5-96. DR1500HARReqHdlr:processEditDR1500HARCtrlSettings (Sequence Diagram) 5-127
Figure 5-97. DR1500HARReqHdlr:processEditDR1500HARHardwareFailureSettings (Sequence Diagram) 5-127
Figure 5-98. DR1500HARReqHdlr:processPollHARNow (Sequence Diagram) .. 5-128
Figure 5-99. DR1500HarReqHdlr:parseHardwareFailureSettings (Sequence Diagram) 5-129
Figure 5-100. GUISHAZAMServletClasses (Class Diagram) .. 5-130
Figure 5-101. SHAZAMReqHdlr:getAddSHAZAMForm (Sequence Diagram) .. 5-133
Figure 5-102. SHAZAMReqHdlr:processAddSHAZAM (Sequence Diagram) .. 5-135

CHART R8 Detailed Design Rev 2 x 08/01/2011

Figure 5-103. SHAZAMReqHdlr:processChangeSHAZAMModel (Sequence Diagram) 5-136
Figure 5-104. SHAZAMReqHdlr:processEditCommsConfig (Sequence Diagram) ... 5-137
Figure 5-105. SHAZAMReqHdlr:processSetAlertAndNotificationSettings (Sequence Diagram) 5-138
Figure 5-106. chartlite.util_classes (Class Diagram) ... 5-139

CHART R8 Detailed Design Rev 2 1-1 08/01/2011

1 Introduction

1.1 Purpose

This document describes the design of the software for CHART Release 8. This build provides

the following new features:

 IP HAR: CHART R8 will add support for TCP/IP communications with the HIS DR1500

HAR. In addition to faster communications, use of TCP/IP allows for more detailed

status information to be collected from the HAR and allows CHART to automatically

poll the HAR and detect hardware failures. Device failure alerts and notifications will be

added for HAR devices, although the system will only be capable of detecting hardware

failures for the HIS DR1500, and only when it is controlled via TCP/IP. (The system will

be capable of detecting communication failures regardless of HAR model and

communication medium.)

 IP SHAZAM: CHART R8 will add support for a new SHAZAM device which

communicates via TCP/IP. The existing automatic refresh feature that exists for the

Viking SHAZAM device will be available for this new SHAZAM model and will be

enhanced to detect hardware failures. Device failure alerts and notifications will be

added for SHAZAM devices, although the system will only be capable of detecting

hardware failures for the new SHAZAM model, the HWG-ER02a. The system will be

able to detect communication failures for either SHAZAM model.

1.2 Objectives

The main objective of this detailed design document is to provide software developers with a

framework in which to implement the requirements identified in the CHART R8 Requirements

document. A matrix mapping requirements to the design is presented in Section 15 (Mapping to

Requirements).

1.3 Scope

This design is limited to Release 8 of the CHART system. It addresses both the design of the

server components of CHART and the Graphical User Interface (GUI) components of CHART

to support the new features being added. This design does not include designs for components

implemented in earlier releases of the CHART system.

1.4 Design Process

The design was created by capturing the requirements of the system in UML Use Case diagrams.

Class diagrams were generated showing the high level objects that address the Use Cases.

Sequence diagrams were generated to show how each piece of major functionality will be

achieved. This process was iterative in nature – the creation of sequence diagrams sometimes

caused re-engineering of the class diagrams, and vice versa.

CHART R8 Detailed Design Rev 2 1-2 08/01/2011

1.5 Design Tools

The work products contained within this design will be extracted from the Tau Unified Modeling

Language (UML) Suite design tool. Within this tool, the design will be contained in the CHART

project, Release 8, Analysis phase and System Design phase.

1.6 Work Products

The final CHART Release 8 design consists of the following work products:

 Use Case diagrams that capture the requirements of the system

 Human-Machine Interface section which provides descriptions of the screens that are

changing or being added in order to allow the user to perform the described uses.

 UML Class diagrams, showing the software objects which allow the system to

accommodate the uses of the system described in the Use Case diagrams

 UML Sequence diagrams showing how the classes interact to accomplish major

functions of the system

 Requirement Verification Traceability Matrix that shows how this design meets the

documented requirements for this feature

This document incorporates both the IP HAR and IP SHAZAM features by providing a single

Use Cases section followed by a Detailed Design section for each feature. The use case

diagrams are in Section 4, followed by the Detailed Design (including Human-Machine

Interface, Class Diagrams, and Sequence Diagrams) for the IP HAR feature in Section 5, and

finally the Detailed Design for IP SHAZAM in Section 6.

CHART R8 Detailed Design Rev 2 2-1 08/01/2011

2 Architecture

The sections below discuss specific elements of the architecture and software components that

are created, changed, or used in CHART Release 8.

2.1 Network/Hardware

CHART Release 8 features do not impact the network or hardware architecture of the CHART

System.

2.2 Software

CHART uses the Common Object Request Broker Architecture (CORBA) as the base

architecture, with custom built software objects made available on the network allowing their

data to be accessed via well defined CORBA interfaces. Communications to remote devices use

the Field Management Server (FMS) architecture. Newer external interfaces such as the User

Management web service, Data Exporter, and GIS service employ a web services architecture

combining an HTTP request/response structure to pass XML messages.

Except where noted in the subsections below, CHART Release 8 features do not impact the

software architecture of the CHART System.

 For CHART R8 the field communications to HAR and SHAZAM devices will include

the ability to use a TCP/IP network connection to connect to devices which support

this communication medium. The existing Telephony communication medium for

devices which require it will remain in place.

2.2.1 COTS Products

2.2.1.1 CHART

CHART uses numerous COTS products for both run-time and development. There is one new

COTS product being added in Release 8:

Product Name Description
Tritonus version 0.3.6

(Open source

implmentation of the Java

Sound API)

CHART uses this open source library to perform audio

conversions to make HAR audio that exists in the

CHART system compatible with the HIS DR1500 IP

HAR.

The following table contains existing COTS products that have not changed for CHART Release

8:

CHART R8 Detailed Design Rev 2 2-2 08/01/2011

Product Name Description
Apache ActiveMQ CHART uses this to connect to RITIS JMS queues

Apache Jakarta Ant CHART uses Apache Jakarta Ant 1.6.5 to build CHART

applications and deployment jars.

Apache Tomcat CHART uses Apache Tomcat 6.0.29 as the GUI web

server.

Apache XML-RPC CHART uses the apache xmlrpc java library 3.1.2

protocol that uses XML over HTTP to implement remote

procedure calls. The video Flash streaming “red button”

(“kill switch”) API uses XML over HTTP remote

procedure calls.

Attention! CC CHART uses Attention! CC Version 2.1 to provide

notification services.

Attention! CC API CHART uses Attention! CC API Version 2.1 to interface

with Attention! CC.

Attention! NS CHART uses Attention! NS Version 7.0 to provide

notification services.

Bison/Flex CHART uses Bison and Flex as part of the process of

compiling binary macro files used for performing camera

menu operations on Vicon Surveyor VFT cameras.

bsn.autosuggest The EORS integration feature uses version 2.1.3 of the

bsn.autosuggest JavaScript code from

brandspankingnew.net. This tool is freely available and

is included as source code in the CHART GUI. It

provides a simple JavaScript tool that can be associated

with a text entry field. When the user types characters in

the field, the tool waits until there has been no typing for

a configurable number of milliseconds (to make sure the

user is done typing) then places an AJAX call to a web

server which can return suggested results that match the

user entered text. The bsn.autosuggest tool then parses

the results (XML or JSON) and displays a UI element

that shows the user the suggestions and lets them select

one of them by clicking on it. If a suggested element is

selected by the user, a configurable JS method is invoked

to allow the application to use the selected suggestion.

CoreTec Decoder Control CHART uses a CoreTec supplied decoder control API for

commanding CoreTec decoders.

Dialogic API CHART uses the Dialogic API for sending and receiving

Dual Tone Multi Frequency (DTMF) tones for HAR

communications.

ESRI's ArcGIS Sever CHART uses version 9.3 to serve maps over the Internet.

ESRI's MapObjects CHART uses the Map Objects 2.4 for spatial algorithms.

Flex2 SDK The CHART GUI will use the Flex2 SDK, version 3.1 to

provide the Flex compiler, the standard Flex libraries, and

CHART R8 Detailed Design Rev 2 2-3 08/01/2011

Product Name Description
examples for building Flex applications.

GIF89 Encoder Utility classes that can create .gif files with optional

animation. This utility is used for the creation of DMS

True Display windows.

JAXB CHART uses the jaxb java library to automate the tedious

task of hand-coding field-by-field XML translation and

validation for exported data.

JDOM CHART uses JDOM b7 (beta-7) dated 2001-07-07.

JDOM provides a way to represent an XML document for

easy and efficient reading, manipulation, and writing.

JacORB CHART uses a compiled, patched version of JacORB

2.2.4. The JacORB source code, including the patched

code, is kept in the CHART source repository.

Java Run-Time (JRE) CHART uses 1.6.0_21

JavaService CHART uses JavaService to install the server side Java

software components as Windows services.

JAXEN CHART uses JAXEN 1.0-beta-8 dated 2002-01-09. The

Jaxen project is a Java XPath Engine. Jaxen is a universal

object model walker, capable of evaluating XPath

expressions across multiple models.

JoeSNMP CHART uses JoeSNMP version 0.2.6 dated 2001-11-11.

JoeSNMP is a Java based implementation of the SNMP

protocol. CHART uses for commanding iMPath MPEG-

2 decoders and for communications with NTCIP DMSs,

and Cameras.

JSON-simple CHART uses the JSON-simple java library to

encode/decode strings that use JSON (JavaScript Object

Notation).

JTS CHART uses the Java Topology Suite (JTS) version 1.8.0

for geographical utility classes.

Log4J CHART uses the log4J version 1.2.15 for logging

purposes.

NSIS CHART uses the Nullsoft Scriptable Installation System

(NSIS), version 2.20, as the server side installation

package.

Nuance Text To Speech For text-to-speech (TTS) conversion CHART uses a TTS

engine that integrates with Microsoft Speech Application

Programming Interface (MSSAPI), version 5.1. CHART

uses Nuance Vocalizer 4.0 with Nuance SAPI 5.1

Integration for Nuance Vocalizer 4.0.

OpenLayers The Integrated Map feature uses the Open Layers

CHART R8 Detailed Design Rev 2 2-4 08/01/2011

Product Name Description
JavaScript API 2.8 (http://openlayers.org/) in order to

render interactive maps within a web application without

relying on vendor specific software. Open Layers is an

open source product released under a BSD style license

which can be found at

(http://svn.openlayers.org/trunk/openlayers/license.txt).

Oracle CHART uses Oracle 10.1.0.5 as its database and uses the

Oracle 10G JDBC libraries (ojdbc1.4.jar) for all database

transactions.

O’Reilly Servlet Provides classes that allow the CHART GUI to handle

file uploads via multi-part form submission.

Prototype Javascript

Library

The CHART GUI uses the Prototype JavaScript library,

version 1.6.0.3, a cross-browser compatible JavaScript

library provides many features (including easy Ajax

support).

SAXPath CHART uses SAXPath 1.0-beta-6 dated 2001-09-27.

SAXPath is an event-based API for XPath parsers, that is,

for parsers which parse XPath expressions.

SQLServer JDBC Driver CHART uses this driver to lookup GIS related data and

also to store Location Aliases in SQL Server databases.

Velocity Template Engine Provides classes that CHART GUI uses in order to create

dynamic web pages using velocity templates, CHART

uses Velocity version 1.6.1 and tools version 1.4.

Vicon V1500 API CHART uses a Vicon supplied API for commanding the

ViconV1500 CPU to switch video on the Vicon V1500

switch

2.2.1.2 Mapping

There are no Mapping Application related changes included in this release, and therefore no

changes to COTS products for that application.

2.2.2 Deployment /Interface Compatibility

2.2.2.1 CHART

2.2.2.1.1 External Interfaces

This section describes the external interfaces in Release 8 of the CHART system.

http://www.garshol.priv.no/xmltools/standard/XPath.html

CHART R8 Detailed Design Rev 2 2-5 08/01/2011

Figure 2-1 CHART and External Interfaces

The external interfaces modified for R8 are:

1. For R8, the interface between CHART and HARs (and SHAZAMs) shown at the top of the

diagram is changed to include TCP/IP communications in addition to the existing Telephony

communications. (Communication protocols are not shown on this diagram.)

Server and GUI deployment diagrams are shown in the next two figures. There are no changes

to these diagrams for R8.

CHART R8 Detailed Design Rev 2 2-6 08/01/2011

CORBA Trading Service

CORBA Event Services

User Manager Service

DMS Service

HAR Service

TSS Service

Message Utility Service

Video Service

EORS Service

See GUI Deployment Diagram
for details.

Web Server

Weather Web Service

Toll Rate Import Service

Travel Route Service

Alert Service

Runs on one
primary server and
one backup server

Schedule Service

Field Management Server

Traffic Event Service

Roadway Location Lookup Service
--

Communications Service

New For R7:
CHART Weather Web Service

Watchdog Service 1

Geo Area Module

Video Device
[Cameras Monitors]

Watchdog Service 2

EORS Server

Firewall

Oracle RDBMS Service

EORS DB

RITIS Service

INRIX Import Service

Field Devices
[DMSs HARs SHAZAMs TSSs]

Vector

Notification Service

CHART Mapping DB Server

Mapping DB SQL Server

Tomcat

CHART Mapping Application Server

GIS Service

Export Client Service

CHART Mapping Service

Firewall

GIS Lane Service

Data Exporter Server (internal)

Notification Server

Data Export Service

Data Exporter Server (external)

COTS Notification Tool

For R7, External detectors and d
Detector Bearing exported,
written to CHARTWeb DB

Data Exporter Service

Firewall

Runs on one
primary server and
one backup server

INRIX Web Service

RITIS System

Email-Pager Providers

UserManagerWebService

Tomcat

HTTPSHTTPS

JMSJMS

IIOPIIOP

HTTPHTTP

MSSQL
Linked Server

MSSQL
Linked Server

TCPIP JDBCTCPIP JDBC

TCPIPTCPIP

HTTPHTTP

HTTPHTTP

IIOPIIOP

HTTPSHTTPS

IIOPIIOP

IIOPIIOP

TCPIP-JDBCTCPIP-JDBC

IIOPIIOP

ISDN POTS
Telephony

ISDN POTS
Telephony

COTSCOTS

TCPIPTCPIP

COTSCOTS

IIOPIIOP

Figure 2-2 R8 Server Deployment

CHART R8 Detailed Design Rev 2 2-7 08/01/2011

Operator Workstation

Internet Explorer

Java 5 Plug In

Audio Recording Applet

Adobe Flash Player 9

GUI Flex2 Application

GUI Web Server

Microsoft IIS

Apache Tomcat

CHART GUI Servlet

Lane Editor
Web Service

See Server Deployment Diagram
for more details.

CHART Application Server

CHART Mapping Application Server

CHART Application Server

GIS Lane Config Service

CHART Mapping Service

CORBA Trading Service

CHART Export Client Service

CORBA Event Service

CHART Services

CHART Database Server

Oracle RDBMS Service

TCPIP-JDBCTCPIP-JDBC

HTTPS-XMLHTTPS-XML
HTTPS-XMLHTTPS-XML

TCPIP-JDBCTCPIP-JDBC

TCPIP - JDBCTCPIP - JDBC

HTTPS-HTMLHTTPS-HTML

TCPIP-JDBCTCPIP-JDBC

HTTPS-JSONHTTPS-JSON

HTTPSHTTPS

HTTPS-XMLHTTPS-XML

IIOPIIOP

IIOPIIOP

Figure 2-3 R8 GUI Deployment

2.2.2.1.2 Internal Interfaces

This section describes the internal interfaces being modified in Release 8 of the CHART system.

1. The existing GUI interface is changed for the IP HAR and IP SHAZAM features. The

forms that are used to configure these devices and display details about these devices are

changed. These changes are detailed in the Human Machine Interface section of this

document. The CHART system IDL has been altered to allow the GUI to pass the new

configuration information for the HARs and SHAZAMs to the HAR Service for

persistence.

2.2.2.2 Mapping

There are no changes to the Mapping Application for this release.

2.3 Security

This section describes the security being added or modified in Release 8 of the CHART system.

Unless otherwise noted, features being added for CHART Release 8 do not change security

aspects of the CHART system.

2.4 Data

CHART Release 8 will be tested with the currently fielded Oracle database patches.

CHART R8 Detailed Design Rev 2 2-8 08/01/2011

2.4.1 Data Storage

The CHART System stores most of its data in an Oracle database. Additionally the Integrated

Map feature adds the ability to store location aliases to the spatial SQL Server database. Some

data is stored in flat files on the CHART servers.

The Mapping Application stores and reads its data from a SQLServer datasbase.

This section describes all of these types of data.

2.4.1.1 Database

2.4.1.1.1 Database Architecture

Except as noted CHART Release 8 features do not impact the overall architecture of the CHART

database.

2.4.1.1.2 Logical Design

2.4.1.1.2.1 CHART Entity Relationship Diagram (ERD)

CHART Database entity relationship diagrams are shown below in the multiple pages of figures

labeled collectively as Figure 2-5.

CHART R8 Detailed Design Rev 2 2-9 08/01/2011

CHART R8 Detailed Design Rev 2 2-10 08/01/2011

CHART R8 Detailed Design Rev 2 2-11 08/01/2011

CHART R8 Detailed Design Rev 2 2-12 08/01/2011

CHART R8 Detailed Design Rev 2 2-13 08/01/2011

CHART R8 Detailed Design Rev 2 2-14 08/01/2011

CHART R8 Detailed Design Rev 2 2-15 08/01/2011

CHART R8 Detailed Design Rev 2 2-16 08/01/2011

CHART R8 Detailed Design Rev 2 2-17 08/01/2011

CHART R8 Detailed Design Rev 2 2-18 08/01/2011

CHART R8 Detailed Design Rev 2 2-19 08/01/2011

CHART R8 Detailed Design Rev 2 2-20 08/01/2011

CHART R8 Detailed Design Rev 2 2-21 08/01/2011

CHART R8 Detailed Design Rev 2 2-22 08/01/2011

Figure 2-4 R8 ERD

CHART R8 Detailed Design Rev 2 2-23 08/01/2011

2.4.1.1.2.2 Function to Entity Matrix Report

The Create, Retrieve, Update, Delete (CRUD) matrix cross-references business functions to

entities and shows the use of the entities by those functions. This report will be generated as part

of the CHART O&M Guide.

2.4.1.1.2.3 Table Definition Report –

In existing tables shown below:

 Deleted columns/constraints marked with a minus sign (“-”)

 Modified columns/constraints marked with an asterisk (“*”)

 New columns/constraints marked with a plus sign (“+”)

2.4.1.1.2.3.1 Tables Modified for the IP HAR / IP SHAZAM features

2.4.1.1.2.3.1.1 CHART

HAR Table

The HAR table is modified to make fields specific to Telephony communications allow NULL

and to add new columns for TCP/IP communications and for configuration values specific to the

DR1500 HAR when operated via TCP/IP.

 CREATE TABLE HAR
 (

 DEVICE_ID CHAR(32) NOT NULL,

 HAR_MODEL_ID NUMBER(5) NOT NULL,

 ORG_ORGANIZATION_ID CHAR(32) NOT NULL,

 DB_CODE VARCHAR2(1),

 DEVICE_NAME VARCHAR2(15) NOT NULL,

 DEVICE_LOCATION VARCHAR2(60),

* HAR_ACCESS_PIN VARCHAR2(7),

* DEFAULT_PHONE_NUMBER VARCHAR2(25),

 DEFAULT_MONITOR_PHONE_NUMBER VARCHAR2(25),

 MAX_TIME NUMBER(5),

 PORT_TYPE NUMBER(1) NOT NULL,

* PORT_MANAGER_TIMEOUT NUMBER(10),

 MONITOR_PORT_TYPE NUMBER(1),

 MONITOR_PORT_MANAGER_TIMEOUT NUMBER(10),

 DEFAULT_HEADER_CLIP_PK NUMBER(20) NOT NULL,

 DEFAULT_BODY_CLIP_PK NUMBER(20) NOT NULL,

 DEFAULT_TRAILER_CLIP_PK NUMBER(20) NOT NULL,

 CREATED_TIMESTAMP DATE,

 UPDATED_TIMESTAMP DATE,

 ENABLE_DEVICE_LOG NUMBER(1) DEFAULT 0 NOT NULL,

 MASTER_HAR_ID CHAR(32) DEFAULT '00000000000000000000000000000000'

 NOT NULL,

 BAND CHAR(2) NOT NULL,

 CALL_SIGN VARCHAR2(64),

CHART R8 Detailed Design Rev 2 2-24 08/01/2011

 FREQUENCY_KHZ NUMBER(6) NOT NULL,

 MAINT_ORGANIZATION_ID CHAR(32),

 DISABLE_DTMF_RESPONSE_MODE NUMBER(1) DEFAULT 0 NOT NULL,

+ TCP_HOST VARCHAR2(16),

+ TCP_PORT NUMBER(5),

+ MIN_DC_VOLTAGE NUMBER(3),

+ MAX_VSWR NUMBER(3),

 CONSTRAINT HAR_PK PRIMARY KEY (DEVICE_ID),

 CONSTRAINT HAR_NAME_UK UNIQUE (DEVICE_NAME),

 CONSTRAINT HAR_PORT_TYPE_CK CHECK (port_type BETWEEN 0 AND 3),

 CONSTRAINT HAR_MONITOR_PORT_MNGR_T_0_CK CHECK

 (monitor_port_manager_timeout BETWEEN 0 AND 2147483647),

 CONSTRAINT HAR_MONITOR_PORT_TYPE_CK CHECK

 (monitor_port_type BETWEEN 0 AND 3),

 CONSTRAINT HAR_MODEL_ID_CK CHECK (har_model_id BETWEEN 0 AND 65535),

 CONSTRAINT HAR_PORT_MANAGER_TIMEOUT_CK CHECK

 (port_manager_timeout BETWEEN 0 AND 2147483647)

);

HAR Status Table

The HAR Status table is modified to include the last time the setup command was run on the

HAR and status values specific to the DR1500 HAR model that are available when

communicating to the HAR using TCP/IP.

 CREATE TABLE HAR_STATUS

 (

 HAR_DEVICE_ID CHAR(32) NOT NULL,

 CEN_CENTER_ID CHAR(32),

 DEVICE_STATE_CODE NUMBER(3) NOT NULL,

 TRANSMITTER_STATE NUMBER(1) NOT NULL,

 HAR_INITIALIZED NUMBER(1) NOT NULL,

 COMM_STATUS NUMBER(1) NOT NULL,

 LAST_CONTACT_TIME DATE,

 STATUS_CHANGE_TIME DATE,

 LAST_DATESTAMP_REFRESH_TIME DATE,

 HM_HAR_MSG_PK NUMBER(10) NOT NULL,

+ LAST_SETUP_TIME DATE,

+ LAST_STATUS_MISMATCH_TIME DATE,

+ POWER_STATUS NUMBER(1),

+ DC_VOLTAGE NUMBER(3),

+ BROADCAST_MONITOR_PCT NUMBER(3),

+ HAR_MODE NUMBER(1),

+ HAR_SUB_MODE NUMBER(1),

+ HAR_SYNC_MODE NUMBER(1),

+ XMIT_SET_POWER NUMBER(3),

+ XMIT_FORWARD_POWER NUMBER(3),

+ XMIT_REFLECTED_POWER NUMBER(3),

+ XMIT_VSWR NUMBER(3),

+ XMIT_MODULATION_PCT NUMBER(3),

+ DCC_VERSION_INFO VARCHAR2(128),

+ HAR_VERSION_INFO VARCHAR2(128),

+ HAR_TIMESTAMP DATE,

CHART R8 Detailed Design Rev 2 2-25 08/01/2011

 CONSTRAINT HS_PK PRIMARY KEY (HAR_DEVICE_ID),

 CONSTRAINT HS_HAR_FK FOREIGN KEY (HAR_DEVICE_ID)

 REFERENCES HAR (DEVICE_ID) ON DELETE

 CASCADE NOT DEFERRABLE INITIALLY IMMEDIATE VALIDATE,

 CONSTRAINT HS_HM_FK FOREIGN KEY (HM_HAR_MSG_PK)

 REFERENCES HAR_MSG (HAR_MSG_PK),

 CONSTRAINT HAR_INITIALIZED_CK CHECK (har_initialized IN (0,1)),

 CONSTRAINT HAR_DEVICE_STATE_CODE_CK CHECK

 (device_state_code BETWEEN 0 AND 2),

 CONSTRAINT TRANSMITTER_STATE_CK CHECK (transmitter_state IN (0,1)),

 CONSTRAINT HAR_COMM_STATUS_CK CHECK (COMM_STATUS BETWEEN 0 AND 3)

);

SHAZAM Table

The SHAZAM table is modified to change the Telephony specific columns to accept NULL and

to add columns needed for TCP/IP communications and the Relay Number needed by the HWG-

ER02a SHAZAM model.

 CREATE TABLE SHAZAM
 (

 DEVICE_ID CHAR(32) NOT NULL,

 SHAZAM_MODEL_ID NUMBER(5) NOT NULL,

 ORG_ORGANIZATION_ID CHAR(32) NOT NULL,

 DB_CODE VARCHAR2(1),

 DEVICE_NAME VARCHAR2(15) NOT NULL,

 DEVICE_LOCATION VARCHAR2(128),

 HAR_DEVICE_ID CHAR(32),

 SHAZAM_ACCESS_PIN VARCHAR2(3),

* DEFAULT_PHONE_NUMBER VARCHAR2(25),

 SHAZAM_DIRECTIONAL_CODE NUMBER(3),

 REFRESH_INTERVAL NUMBER(5),

 REFRESH_ENABLED NUMBER(1) NOT NULL,

 PORT_TYPE NUMBER(1) NOT NULL,

* PORT_MANAGER_TIMEOUT NUMBER(10),

 CREATED_TIMESTAMP DATE,

 UPDATED_TIMESTAMP DATE,

 MESSAGE VARCHAR2(256),

 MAINT_ORGANIZATION_ID CHAR(32),

+ TCP_HOST VARCHAR2(16),

+ TCP_PORT NUMBER(5),

+ RELAY_NUMBER NUMBER(2),

 CONSTRAINT SHAZAM_PK PRIMARY KEY (DEVICE_ID),

 CONSTRAINT SHAZAM_NAME_UK UNIQUE (DEVICE_NAME),

 CONSTRAINT SHAZAM_DIRECTIONAL_CODE_CK CHECK

 (SHAZAM_DIRECTIONAL_CODE BETWEEN 0 AND 255),

 CONSTRAINT REFRESH_INTERVAL_CK CHECK

 (refresh_interval BETWEEN 0 AND 65535),

 CONSTRAINT SHAZAM_MODEL_ID_CK CHECK

 (shazam_model_id BETWEEN 0 AND 65535),

 CONSTRAINT SHAZAM_PORT_MANAGER_TIMEOUT_CK CHECK

 (port_manager_timeout BETWEEN 0 AND 2147483647),

 CONSTRAINT SHAZAM_PORT_TYPE_CK CHECK (port_type BETWEEN 0 AND 3)

CHART R8 Detailed Design Rev 2 2-26 08/01/2011

);

SHAZAM_STATUS Table

The SHAZAM_STATUS table is modified to add a column to store the actual beacon status as queried from the

device. This column only applies to the HWG-ER02a model and will be NULL for Viking RC2A SHAZAMs.

CREATE TABLE SHAZAM_STATUS

(

 SHAZAM_DEVICE_ID CHAR(32) NOT NULL,

 CEN_CENTER_ID CHAR(32),

 DEVICE_STATE_CODE NUMBER(3) NOT NULL,

 BEACON_STATE NUMBER(1),

 COMM_STATUS NUMBER(1) NOT NULL,

 STATUS_CHANGE_TIME DATE,

 LAST_ATTEMPTED_REFRESH_TIME DATE,

 LAST_CONTACT_TIME DATE,

+ BEACON_STATE_ACTUAL NUMBER(1),

 CONSTRAINT SS_PK PRIMARY KEY (SHAZAM_DEVICE_ID),

 CONSTRAINT SS_SHAZAM_FK FOREIGN KEY (SHAZAM_DEVICE_ID)

 REFERENCES SHAZAM (DEVICE_ID)

 ON DELETE CASCADE NOT DEFERRABLE INITIALLY IMMEDIATE VALIDATE,

 CONSTRAINT SHAZAM_COMM_STATUS_CK CHECK (comm_status BETWEEN 0 AND 2),

 CONSTRAINT SHAZAM_DEVICE_STATE_CODE_CK CHECK

 (device_state_code BETWEEN 0 AND 2),

 CONSTRAINT SHAZAM_BEACON_STATE_CK CHECK (beacon_state IN (0,1))

);

DEVICE_ALERT_NOTIFICATION Table (NEW)

This is a new table that is used to store alert and notification settings for a device. For R8, this

will be used for both HAR and SHAZAM devices, and is available for use for other device types

in the future. There will be one row in this table for each SHAZAM in the SHAZAM table, and

one row in this table for each HAR in the HAR table.

CREATE TABLE DEVICE_ALERT_NOTIFICATION

 (

 OBJECT_ID VARCHAR2(32),

 DEVICE_TYPE NUMBER(3),

 COMMFAIL_ALERT_CENTER_ID CHAR(32),

 HWFAIL_ALERT_CENTER_ID CHAR(32),

 COMMFAIL_NOTIF_GROUP_ID NUMBER(5),

 COMMFAIL_NOTIF_GROUP_NAME VARCHAR2(50),

 HWFAIL_NOTIF_GROUP_ID NUMBER(5),

 HWFAIL_NOTIF_GROUP_NAME VARCHAR2(50),

 CONSTRAINT PK_DEVICE_ALERT_NOTIFICATION PRIMARY KEY (OBJECT_ID)

);

The following scripts will be used to add rows to DEVICE_ALERT_NOTIFICATION for HARs

and SHAZAMs that already exist in the database at the time of R8 deployment:

CHART R8 Detailed Design Rev 2 2-27 08/01/2011

INSERT INTO DEVICE_ALERT_NOTIFICATION

(

 OBJECT_ID,

 DEVICE_TYPE,

 COMMFAIL_ALERT_CENTER_ID,

 HWFAIL_ALERT_CENTER_ID,

 COMMFAIL_NOTIF_GROUP_ID,

 COMMFAIL_NOTIF_GROUP_NAME,

 HWFAIL_NOTIF_GROUP_ID,

 HWFAIL_NOTIF_GROUP_NAME

)

SELECT DEVICE_ID, 6, '00000000000000000000000000000000',

 '00000000000000000000000000000000',

 NULL,NULL,NULL,NULL

FROM HAR;

INSERT INTO DEVICE_ALERT_NOTIFICATION(

 OBJECT_ID,

 DEVICE_TYPE,

 COMMFAIL_ALERT_CENTER_ID,

 HWFAIL_ALERT_CENTER_ID,

 COMMFAIL_NOTIF_GROUP_ID,

 COMMFAIL_NOTIF_GROUP_NAME,

 HWFAIL_NOTIF_GROUP_ID,

 HWFAIL_NOTIF_GROUP_NAME)

SELECT DEVICE_ID, 255, '00000000000000000000000000000000',

 '00000000000000000000000000000000',

 NULL,NULL,NULL,NULL

FROM SHAZAM;

2.4.1.1.2.3.1.2 Mapping

There are no mapping related database changes for CHART R8.

2.4.1.1.2.4 PL/SQL Module Definition and Database Trigger Reports

There are no new PL/SQL modules for CHART R8.

2.4.1.1.2.5 Database Size Estimate - provides size estimate of current design

There are no changes of any significance to the database size for R8.

CHART R8 Detailed Design Rev 2 2-28 08/01/2011

2.4.1.1.2.6 Data Distribution

There are no changes to data distribution for R8.

2.4.1.1.2.7 Database Replication

There are no changes to database replication for R8.

2.4.1.1.2.8 Archival Migration

There are no changes to archival migration for R8.

2.4.1.1.2.9 Database Failover Strategy

There are no changes to the database failover strategy for R8.

2.4.1.1.2.10 Reports

No reports will be added or updated for R8. Since R5, the CHART reporting function has been

transferred to University of Maryland.

2.4.1.2 CHART Flat Files

The following describes the use of flat files in CHART.

2.4.1.2.1 Service Registration Files

There are no new Java services and therefore no new service registration files for CHART R8.

2.4.1.2.2 Service Property Files

There are only minor changes to existing service property files for CHART R8. Communication

timeout parameters are added for both HAR and SHAZAM devices in the HAR Service property

file.

2.4.1.2.3 GUI Property Files

There are no updates to the GUI properties file in its WEB-INF directory for CHART R8.

2.4.1.2.4 Arbitration Queue Storage Files

There are no changes to Arbitration Queue Storage Files for R8.

2.4.1.2.5 Device Logs

There are no changes to Device Log Files for R8.

2.4.1.2.6 Traffic Sensor Raw Data Logs

There are no changes to Traffic Sensor Raw Data Log Files for R8.

2.4.1.2.7 Service Process Logs

All CHART services write to a process log, used to provide a historical record of activity

undertaken by the services. These logs are occasionally referenced by software engineering

CHART R8 Detailed Design Rev 2 2-29 08/01/2011

personnel to diagnose a problem or reconstruct a sequence of events leading to a particular

anomalous situation. These logs are automatically deleted by the system after a set period of

time defined by the service’s properties file, so they do not accumulate infinitely. These files are

stored in the individual service directories and are named by the service name and date, plus a

“.txt” extension. These logs are typically read only by software engineering personnel. Except

where noted, there are no changes for service process logs for R8 features.

2.4.1.2.8 Service Error Logs

All CHART services write to an error log, used to provide detail on certain errors encountered by

the services. Most messages, including most errors, are captured by the CHART software and

written to the process logs, but certain messages (typically produced by the Java Virtual Machine

itself, by COTS, or DLLs) cannot be captured by CHART Software and instead are captured in

these "catch-all" logs. Errors stored in these logs are typically problems resulting from a bad

installation; once the system is up and running, errors rarely appear in these error logs.

Debugging information from the JacORB COTS, which is not usually indicative of errors, can

routinely be found in these error logs, as well. These log files can be reviewed by software

engineering personnel to diagnose an installation problem or other type of problem. These logs

are automatically deleted by the system after a set period of time defined by the service's

properties file, so they do not accumulate infinitely. These files are stored in the individual

service directories and are named by the service name and date, plus an ".err" extension. These

logs are typically read only by software engineering personnel. Except where noted, there are no

changes for service error logs for R8 features.

2.4.1.2.9 GUI Process Logs

Like the CHART background services, the CHART GUI service also writes to a process log file,

used to provide a historical record of activity undertaken by the process. These GUI process logs

are occasionally referenced by software engineering personnel to diagnose a problem or

reconstruct a sequence of events leading to a particular anomalous situation. These logs are

automatically deleted by the system after a set period of time defined by the GUI service’s

properties file, so they do not accumulate infinitely. These files are stored in the

chartlite/LogFiles/ directory under the WebApps/ directory in the Apache Tomcat

installation area. They are named by the service name (“chartlite”) and date, plus a “.txt”

extension. These logs are typically read only by software engineering personnel. Additional log

files written by the Apache Tomcat system itself are stored in the log/ directory in the Apache

Tomcat installation area.

 R8 GUI changes do not change the way the GUI process logs operate.

2.4.1.2.10 FMS Port Configuration Files

The CHART Communications Services read a Port Configuration file, typically named

PortConfig.xml, upon startup, which indicates which ports are to be used by the service and

how they are to be initialized. A Port Configuration Utility is provided which allows for

addition, removal of ports and editing of initialization parameters. As indicated by the extension,

these files are in XML format. This means these files are hand-editable, although the Port

CHART R8 Detailed Design Rev 2 2-30 08/01/2011

Configuration Utility allows for safer, more controlled editing. The Port Configuration files are

typically modified only by software engineers or telecommunications engineers.

 There are no changes to this section for the any of the R8 features.

2.4.1.2.11 Watchdog Configuration Files

There are no changes to the watchdog configuration files for any of the R8 features.

2.4.2 Database Design

Changes made to the CHART database design for Release 8 features are described below.

2.4.2.1 HAR and SHAZAM

2.4.2.1.1 CHART

The changes to the database design for R8 are detailed above in section 2.4.1. Following is

a description of these changes:

HAR Table

The HAR Table is updated to allow NULL values in columns that are specific to Telephony

communications, for those columns will be empty when a HAR is set up to use TCP/IP

communications. New columns are added to support TCP/IP communications. New

columns are also added for thresholds that are set for use in detecting hardware failures in

DR1500 HARs that are set to use TCP/IP communications. (They are not used for DR1500

HARs that use Telephony based communications because the system cannot query the status

of the HAR when using Telephony).

HAR_STATUS Table

The HAR_STATUS table is updated to include new columns for status values that can be

retreieved from DR1500 HARs when TCP/IP communications are used.

SHAZAM Table

The SHAZAM table is updated to allow NULL in columns specific to Telephony

communications and to add columns used for TCP/IP communications. A column is also

added to identify the relay that is to be used on the HWG-ER02a SHAZAM. This model

SHAZAM contains 2 relays, only one of which is used in CHART (and by the device to

cause the beacons to flash on the SHAZAM sign.)

SHAZAM_STATUS Table

CHART R8 Detailed Design Rev 2 2-31 08/01/2011

The SHAZAM_STATUS table is updated to include a new column that is used to store the

actual SHAZAM beacon state as read from the SHAZAM. This is only supported for the

HWG-ER02a model and will always be NULL for the Viking RC2A model SHAZAM.

DEVICE_ALERT_NOTIFICATION Table

The DEVICE_ALERT_NOTIFICATION table is new for R8. It is used to store alert and

notification settings for devices. In R8, this table is used for HAR and SHAZAM devices,

but is available for use by other devices in future releases. There will be one row in this table

for each HAR and SHAZAM device defined in the HAR and SHAZAM tables. Use of a

common table allows us to keep these fields out of the HAR and SHAZAM tables and allows

for code reuse.

2.4.2.1.2 Intranet Mapping

There are no Intranet Mapping database design changes for R8.

CHART R8 Detailed Design Rev 2 3-1 08/01/2011

3 Key Design Concepts

3.1 IP HAR

Background

The IP HAR feature includes changes to support HARs that are connected to CHART via the

TCP/IP network. CHART already supports DR1500 HARs that are connected via POTS and use

of a Telephony port. An optional module known as the Digital Communications Controller

(DCC) can be added to a DR1500 HAR to enable TCP/IP communications. Several existing

DR1500 HARs are being outfitted with this module, and other new HARs that already contain

this module are being added to the system. There are other DR1500 HARs that are currently

fielded that do not have a DCC and will not have a DCC added. CHART will continue to

communicate with those DR1500 HARs using POTS and a Telephony port.

Communications

When adding a HAR to the system, administrators will now be able to select TCP/IP

communications for the DR1500 model. When TCP/IP communications are selected for a

DR1500 HAR, the user may also enable polling of the device to have the system periodically

check the status of the HAR. The communications type can be edited after a HAR is initially

added to the system using the Control Line Communications Settings form.

Polling

When a DR1500 HAR is set to use TCP/IP communications and polling is enabled, the system

will query its status on the interval as specified in the configuration. During each status poll, the

system will check the HAR state as reported by the device against the HAR state as specified in

CHART to determine if the HAR indicates it is doing what CHART last commanded it to do.

CHART will check the play list and the transmitter on/off status to determine if there is a status

match. If the status does not match, CHART will automatically queue a setup command for the

HAR to restore clips to the HAR. The setup command downloads clips, sets the play list, and

sets the transmitter on/off according the state specified in CHART.

Another function perfomed during a poll of a DR1500 is to check status values against

configured thresholds for those values. Configuration values are included to allow thresholds for

various status values to be specified, and these values will be used by the system during polling

to determine if a hardware failure condition exists. If during a status poll CHART determines a

status value lies outside the configured threshold it will set the HAR status to hardware failed.

The values CHART will check against thesholds are the DC Voltage and Voltage Standing Wave

Ratio (VSWR).

The status values obtained from the most recent poll of the HAR are displayed on the HAR’s

details page within the GUI and will indicate which values (if any) are found to be outside the

configured thresholds and therefore cause a hardware failure condition.

CHART R8 Detailed Design Rev 2 3-2 08/01/2011

Monitoring HAR Audio

When a DR1500 HAR is operated using TCP/IP communications, monitoring the HAR’s audio

is not possible. If a POTS line is connected to the HAR operators can dial into a DR1500 HAR

and issue commands to determine its current message as they do prior to R8 support for TCP/IP

communications.

Alerts and Notifications

CHART will allow alert and notification settings to be set for each HAR, regardless of its model

and the type of communications used to control it. Separate values are supported to specify the

op center to receive communication failure alerts, the op center to receive hardware failure alerts,

the notification group to recive notifications of communication failures, and the notification

group to receive notifications of hardware failures. Any or all of these values can be set to

“None” to disable that particular alert or notification. When enabled, if CHART detects a status

change related to the given type of failure (hardware or communication), CHART will create an

alert and assign it to the specified operations center and/or will send a notification to the

specified notification group.

Some HAR models (such as the AP55 and DR1500 configured to use a Telephony port) do not

support polling or retrieving status, so these HARs will never raise a hardware failed condition

and therefore setting an op center and/or notification group for those HARs will serve little

purpose. The alert and notification feature is being developed generically to apply to all HARs

to avoid rework in the future if support for new HAR models is added to the system.

3.2 IP SHAZAM

Background

A new SHAZAM model is being introduced in the systsem. This SHAZAM is known as the

HWG-ER02a and is a simple device that provides network access to two electronic relays. One

of the relays will be connected to the beacon ciruitry of the highway sign the SHAZAM is

attached to, and the other relay will be unused. When a SHAZAM is activated in CHART,

CHART will close the relay that is used to turn the beacons on. Likewise, when the SHAZAM is

deactivated in CHART, CHART will open the relay which will cause the beacons to turn off.

Communications

When adding a SHAZAM to the system, administrators will now be able to select the model of

the SHAZAM being added. The existing model, Viking RC2A will exist as a choice in addition

to the new model, HWG-ER02a. When a Viking RC2A model is selected, Telephony port

communications will automatically be selected and the administrator can enter the related fields

as they do today, including the default phone number, access code, port manager connection

timeout, and the port manager configuration. When the ER02a model is selected, TCP/IP

communications will automatically be selected and the administrator can enter the IP address and

port.

CHART R8 Detailed Design Rev 2 3-3 08/01/2011

Refresh / Polling

The CHART system currently provides a refresh feature for SHAZAM devices. This feature

allows refresh to be enabled for a SHAZAM and for a refresh interval to be specified. When

refresh is enabled, CHART periodically connects to the SHAZAM and issues commands to set

the SHAZAMs beacons to the state currently specified in CHART (beacons on or off). This

feature will also be supported for the new HWG-ER02a model being added in R8. The one

difference is that the HWG-ER02a model allows the status of its relay (and thus the status of the

beacons) to be queried. When doing a refresh for a HWG-ER02a SHAZAM, CHART will check

the status of the relay after the refresh command to determine if the relay is set as CHART

commanded it. If not, CHART will set the SHAZAMs status to indicate a hardware failure.

Alerts and Notifications

CHART will allow alert and notification settings to be set for each SHAZAM, regardless of its

model and the type of communications used to control it. Separate values are supported to

specify the op center to receive communication failure alerts, the op center to receive hardware

failure alerts, the notification group to recive notifications of communication failures, and the

notification group to receive notifications of hardware failures. Any or all of these values can be

set to “None” to disable that particular alert or notification. When enabled, if CHART detects a

status change related to the given type of failure (hardware or communication), CHART will

create an alert and assign it to the specified operations center and/or will send a notification to

the specified notification group.

Only the HWG-ER02a SHAZAM model supports detecting a hardware failure. The Viking

RC2A will never raise a hardware failed condition and therefore setting an op center and/or

notification group for those SHAZAMs will serve little purpose. The alert and notification

feature is being developed generically to apply to all SHAZAMs to avoid rework in the future if

support for new SHAZAM models are added to the system.

3.3 Error Processing

In general, CHART traps conditions at both the GUI and at the server. User errors that are

trapped by the GUI are reported immediately back to the user. The GUI will also report

communications problems with the server back to the user. The server may also trap user errors

and those messages will be written to a server log file and returned back to the GUI for display to

the user. Additionally, server errors due to network errors or internal server problems will be

written to log files and returned back to the GUI.

3.4 Packaging

3.4.1 CHART

This software design is broken into packages of related classes. The table below shows each

package that is new or changed to support the Release 7 features.

Package Name Package Description
CHART2.DeviceManagement This CORBA package will be modified for R8 to define settings that

CHART R8 Detailed Design Rev 2 3-4 08/01/2011

Package Name Package Description
can be used to control alerts and notifications for devices.

CHART2.DeviceUtility This package is changed for R8 to add utility classes related to creating

device alerts and notifications.

CHART2.HARControl This CORBA package will be modified for R8 to add support for

TCP/IP HAR communications and various configuration and status

fields.

CHART2.HARControlModule This package is changed for R8 to support the IP HAR and HAR

device alerts and notifications.

CHART2.HARNotification This CORBA package will be modified for R8 to add support for

TCP/IP communications for SHAZAM devices and to add support for

the HWG-ER02a SHAZAM model.

CHART2.SHAZAMControlModule

This package will be modified for R8 to add support for the HWG-

ER02a SHAZAM and SHAZAM device alerts and notifications.

CHART2.Utility This package will be changed in R8 to add some utiltiy methods to the

ByteUtil package that will be used when communicating with the IP

HAR.

chartlite.data This GUI package will be changed in R8 to add generic support for

device alerts and notification settings.

chartlite.data.har This GUI package will be changed in R8 to support the new

configuration and status settings of the IP HAR.

chartlite.data.shazam This GUI package will been changed in R8 to support the new

SHAZAM model.

chartlite.servlet.har This GUI package will be modified in R8 to add support for TCP/IP

HAR communications, polling, and alert and notification settings.

chartlite.servlet.shazam This GUI package will be modified in R8 to add support for the new

SHAZAM model.

3.4.2 Mapping

There are no mapping related packages (namespaces) added or modified for R8.

Namespace Name Namespace Description
None None

3.5 Assumptions and Constraints

1. The CHART software will be built to support the HAR DCC module with firmware

version 5.26. All DR1500 HARs that are to be controlled via CHART R8 using TCP/IP

communications must have firmware version 5.26 on their DCC.

2. CHART will continue to support DR1500 HARs that do not use a DCC and instead

continue to use POTS and a Telphony port for control.

CHART R8 Detailed Design Rev 2 4-1 08/01/2011

4 Use Cases – IP HAR and IP SHAZAM

This section includes CHART use case diagrams for the IP HAR and IP SHAZAM features. There are no changes to the Mapping

application for R8 and therefore no use case diagrams for Mapping are included.

4.1 CHART

The use case diagrams depict new functionality for the CHART IP HAR and IP SHAZAM features. The use case diagrams exist in

the Tau design tool in the Release8 area. The sections below indicate the title of the use case diagrams that apply to the IP HAR

and IP SHAZAM.

4.1.1 Configure HAR (Use Case Diagram)

This diagram contains settings related to configuration of HAR and SHAZAM devices.

CHART R8 Detailed Design Rev 2 4-2 08/01/2011

«extends»

«extends»

Change SHAZAM
Model

New for R8

Configure HWG-ER02a
SHAZAM

Set SHAZAM Configuration

Administrator

Set HAR Configuration

Set DR1500 Hardware
Failure Detection

Settings

Set TCPIP
Communication Settings

Set Telephony
Communication

Settings

Set HAR Communication
Settings

Set SHAZAM
Communication

Settings

New for R8

New for R8

Changed in R8

Changed in R8

Set Alert and Notification
SettingsAdd SHAZAM

Remove SHAZAM

Add HAR

Remove HAR

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

«include»

Figure 4-1. ConfigureHAR (Use Case Diagram)

4.1.1.1 Add HAR (Use Case)

A user with appropriate privileges may add a HAR to the system. The settings for the HAR must be specified when the HAR

is added.

4.1.1.2 Add SHAZAM (Use Case)

A user with appropriate privileges can add a SHAZAM to the system. The settings for the SHAZAM must be specified at the

CHART R8 Detailed Design Rev 2 4-3 08/01/2011

time the SHAZAM is added.

4.1.1.3 Administrator (Actor)

An administrator is a CHART user that has functional rights assigned to allow them to perform administrative tasks, such as

system configuration and maintenance.

4.1.1.4 Change SHAZAM Model (Use Case)

The administrator can change the model of a SHAZAM if the SHAZAM is offline. When this occurs, any data specific to the

target SHAZAM model will be defaulted and will require a separate edit to update (see Edit SHAZAM Configuration). This

operation will keep the association between a HAR and the SHAZAM in tact (if any such association exists).

4.1.1.5 Configure HWG-ER02a SHAZAM (Use Case)

The system shall support setting the relay that is in use on a HWG-ER02a SHAZAM (Relay 1 or Relay 2).

4.1.1.6 Remove HAR (Use Case)

The system shall allow a suitably privileged user to remove an offline HAR from the system.

4.1.1.7 Remove SHAZAM (Use Case)

The system shall allow a suitably privileged user to remove an offline SHAZAM from the system.

4.1.1.8 Set Alert and Notification Settings (Use Case)

The system supports settings for a device used to specify which operations centers are to be notified of device failures and

device communication failures. Similarly, settings exist to specify the notification group to recieve hardware failure

notifications and the group to receive communication failure notifications. All 4 of these settings support a value of None to

allow the associated alerts and notifications to be disabled.

4.1.1.9 Set DR1500 Hardware Failure Detection Settings (Use Case)

The system supports configuration settings for the DR1500 HAR that allow the system to detect when the HAR is hardware

CHART R8 Detailed Design Rev 2 4-4 08/01/2011

failed. These settings are only applicable when the system is configured to use TCP/IP to communicate with the HAR. The

settings include minimum DC voltage and the maximum voltage standing wave ratio (VSWR).

4.1.1.10 Set HAR Communication Settings (Use Case)

The system supports settings that determine how the system is to communicate with a HAR. Control line settings specify how

to communicate with the HAR to control the device (set message etc.) while monitor line settings specify how to

communicate with the HAR to monitor its current broadcast. The monitor line is only available for the AP55 HAR model,

and only Telephony communications are supported for the monitor line. The control line settings can be Telephony or

TCP/IP, however the AP55 model does not support TCP/IP communications. An access code is required when Telephony

port communications are specified. The default TCP/IP port for HIS DR1500 HARs shall be 200.

4.1.1.11 Set HAR Configuration (Use Case)

The system shall allow a suitably privileged user to set the HAR configuration settings. This can be done as part of adding a

HAR or on an existing HAR. The settings include the HAR name, location, and other basic settings. Default header, trailer,

and message clips are included as part of the configuration. Communication settings and alert and notification settings are

also included. Polling settings are included for the DR1500 HAR when TCP/IP communications are specified, including the

ability to enable or disable polling and the polling rate (which defaults to 5 minutes).

4.1.1.12 Set SHAZAM Communication Settings (Use Case)

The system shall allow the communication settings for a SHAZAM to be set. The system supports both Telephony and

TCP/IP communications. The Viking RC2A SHAZAM supports only Telephony communications and the HWG-ER02a

SHAZAM supports only TCP/IP communications.

4.1.1.13 Set SHAZAM Configuration (Use Case)

The system allows the configuration settings for a SHAZAM to be specified while adding a SHAZAM to the system and

allows the settings to be changed for SHAZAM devices that already exist in the system. The settings include the name,

location, and other basic settings. Also included are communication settings and alert and notification settings. Automatic

refresh can be enabled and the refresh interval can be specified. The default refresh interval for SHAZAMs that use TCP/IP

communications is 5 minutes. The system supports two SHAZAM models, the Viking RC2A and the HWG-ER02a. The user

can select the SHAZAM model when adding a SHAZAM. The model can be changed for an existing SHAZAM via a

CHART R8 Detailed Design Rev 2 4-5 08/01/2011

separate operation (see Change SHAZAM Model). The access code for a Viking RC2A is included as part of its

configuration, and the relay to be used on a HWG-ER02a is included as part of its configuration.

4.1.1.14 Set TCPIP Communication Settings (Use Case)

The system allows TCP/IP communication settings to be set for devices that support TCP/IP communications. The TCP/IP

communication settings include the IP address of the device and the port where the device listens for connections.

4.1.1.15 Set Telephony Communication Settings (Use Case)

The system allows Telephony communications settings to be set for devices that communicate via a Telephony Card, such as

some HAR and SHAZAM device models. The Telephony settings include the default phone number, one or more port

managers, the phone number to use when connecting to the device from each selected port manager, and the port manager

connection timeout.

4.1.2 ControlHAR (Use Case Diagram)

The system allows users to control Highway Advisory Radio (HAR) devices deployed throughout the state to broadcast traffic

alerts to motorists. The system also allows roadside signs, known as SHAZAMs to be activated to notify travelers to tune

their radio to a specified station to hear the traffic alert that is being broadcast. In R8 support for TCP/IP communications is

added for the DR1500 HAR and a new SHAZAM model is added. The underlying software changes will affect most (if not

all) use cases shown on this diagram.

CHART R8 Detailed Design Rev 2 4-6 08/01/2011

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«extends»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses» «uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«extends»

«extends»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Take HAR Offline

Uses setup HAR
If HAR was previously
offline.

Blank HAR

Reset SHAZAM
to Last Known

State System

Update HAR
Message DateTime

Put HAR in
Maintenance Mode

Turn Off HAR
Transmitter

Turn On HAR
Transmitter

Reset HAR

Setup HAR

View HAR
Slot Usage

Put SHAZAM Online

Changed in R8:

Nearly every use case in this diagram
is affected by the changes for R8
in some way and need to be tested.
Support for TCP/IP communications
for the DR1500 will affect every use
case that directly or indirectly causes
communications to the HAR. A new
model of SHAZAM is added, and therefore
every SHAZAM related use case that
directly or indirectly causes SHAZAM
communications is affected.

Operator

Reset HWGER02a
SHAZAM to Last

Known State

Edit Default
HAR Clip

Monitor HAR
Message

New for R8

Poll DR1500 HAR

Maintain HAR State

UseDMSAsSHAZAM

Put SHAZAM in
 Maintenance Mode

only when
HAR was
previously
offline

Only allowed
when HAR in
maint mode

Evaluate
HAR Device

Queue Entries

Only allowed
when HAR in
Maint Mode

Listen To HAR
 Message

Operator

Take SHAZAM Offline

Deactivate
SHAZAM

Activate
SHAZAM

Set HAR
Message

Check For
Banned Words

Record audio
HAR Message

Put HAR Online

Format HAR
Message

«include»

Figure 4-2. ControlHAR (Use Case Diagram)

CHART R8 Detailed Design Rev 2 4-7 08/01/2011

4.1.2.1 Activate SHAZAM (Use Case)

An online SHAZAM is activated through a HAR message activation that includes the SHAZAM. A SHAZAM may also be

activated independently when it is in maintenance mode. When a SHAZAM device is activated, its beacons are enabled. In

the case of a DMS acting as a SHAZAM, a previously configured message (similar to a message that would be displayed on a

SHAZAM with a fixed sign) is displayed.

An online SHAZAM can only be activated if the SHAZAM is associated to a HAR and the HAR is currently playing a

message (other than the default message).

If a SHAZAM is allowed to be activated when it is already in use by an event response plan (same op center usage or override

functional right), a message is logged in the original event's history indicating that the SHAZAM is no longer in use by the

event.

4.1.2.2 Blank HAR (Use Case)

A HAR can be blanked if it is online or in maintenance mode. When the HAR is online, the device is only blanked if there

are no traffic events that have currently requested that a message be placed on the device. When the HAR is in maintenance

mode, the HAR can be blanked directly by the user.

A HAR can be blanked indirectly through administrative functions such as placing the device online or resetting the device.

When a HAR is blanked, the system will set the HAR's default message to be the current message. Additionally, the system

will deactivate any associated active SHAZAMs before blanking the HAR itself.

This functionality is being updated in R8 to support TCP/IP communications to DR1500 devices.

4.1.2.3 Check For Banned Words (Use Case)

An operator (or the system) validates a text message by checking the words against the list of banned words for a particular

device type. The check for banned words will be case insensitive.

4.1.2.4 Deactivate SHAZAM (Use Case)

An online SHAZAM can be deactivated by a user closing an event that was using the SHAZAM in its response plan or

indirectly through operations such as taking a SHAZAM or HAR offline. A SHAZAM can also be deactivated independently

CHART R8 Detailed Design Rev 2 4-8 08/01/2011

when the SHAZAM is in maintenance mode. Deactivating a SHAZAM stops its beacons from flashing and in the case of a

DMS acting as a SHAZAM, blanks the "tune radio" message. When a SHAZAM is deactivated and it was being used in an

event's response plan, a message is logged in the event's history indicating the SHAZAM was deactivated.

4.1.2.5 Edit Default HAR Clip (Use Case)

A user can edit the default header, trailer, and message stored in the HAR controller.

4.1.2.6 Evaluate HAR Device Queue Entries (Use Case)

The system shall evaluate entries placed on a HAR's arbitration queue in response to traffic events. The system shall use a

priority algorithm to determine which message shall be placed on the HAR device. The system shall evaluate entries when a

new entry is added, when an entry is removed, and when notified by the HAR device object that a previous asynchronous

request has completed. When the queue is evaluated, the highest priority message shall be set on the HAR device, unless it is

already currently set on the HAR device. When an evaluation occurs and the queue has become empty, the queue shall set the

HAR device to its default message. The queue shall allow the concatenation of multiple messages to be set on the HAR

device as the recording space on the HAR allows and according to configuration settings and concatenation rules. The rules

that govern this feature are specified by an administrator in the system profile.

4.1.2.7 Format HAR Message (Use Case)

An operator may use the HAR message editor to create a HAR message. The editor will allow the operator to enter header,

body and trailer text for the message. The text will be validated for banned and approved words. The editor will also allow

the operator to view the run-time of the spoken message in minutes and seconds. If the run-time is greater than two minutes

the system will alert the user by displaying the run-time in red text. The editor will allow an operator to insert delays between

message segments. Text messages created by the user will be converted to an audio format by the system.

Message text shall allow inclusion of an optional date/time field that can be automatically updated by the system. This field

can be included in-line in the text and may be used more than once in the message. The date/time field shall specify the

format of this field (when included). Valid formats shall include general time of day (morning 00:00 - 11:59, afternoon 12:00

- 16:59, evening 17:00 - 23:59) and others (TBD). The system shall replace the date time fields with text based on the current

time of day and the specified format.

CHART R8 Detailed Design Rev 2 4-9 08/01/2011

4.1.2.8 Listen To HAR Message (Use Case)

The user can listen to the current message CHART has specified for broadcast by a HAR device. The user can listen to the

header, body, and/or trailer. Note that the actual message being broadcast by the HAR could differ if the device is failed or

has been commanded outside of the CHART system.

4.1.2.9 Maintain HAR State (Use Case)

DR1500 HARs using TCP/IP communications will be able to use poll data to correct the state of a HAR if it's detected to be

out of synch with the state specified in CHART. Out of synch state will be detectd by querying the current play list and

transmitter status.

4.1.2.10 Monitor HAR Message (Use Case)

The system allows the user to monitor the actual audio being broadcast by a HAR. The user may also monitor the actual audio

stored in the controller for the default header, trailer, or message clips. This feature is only available if the HAR model and

communications method supports monitoring, which includes the AP55 and the HIS DR1500 when a telephony port is used

for communications. This feature is not available for the DR1500 when TCP/IP communications are used.

4.1.2.11 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for

system access.

4.1.2.12 Poll DR1500 HAR (Use Case)

The ability to poll DR1500 HARs will exist for devices configured for TCP/IP communications. Polling will be done

automatically on a specified period if automatic polling is enabled for the HAR. The user can force a poll if the HAR is

online and the user possesses the maintain HAR or respond to event right, or if the HAR is in maintenance mode and the user

possesses the maintain HAR right. Asside from collecting status data for display on the HAR's details page, the polling

process will also ensure the state of the HAR is consistent with the state as last commanded by the system (see Maintain HAR

State) and will detect if a hardware failure condition is present (see Set DR1500 Hardware Failure Detection Settings). The

system shall consider a DR1500 hardware failed if any of the status values fall outside the configured hardware failure

detection settings or if the HAR controller is found to have the power off. If a communication or hardware failure is detected

while polling the HAR, alerts and/or notifications will be sent to the configured operations center and notification group as set

CHART R8 Detailed Design Rev 2 4-10 08/01/2011

for the HAR (if any - see Set Alert and Notification Settings). Notifications will be sent to the configured group(s) (if any) on

any operational status transition (OK to hardware failed, OK to communication failed, communication failed to OK,

communication failed to hardware failed, hardware failed to OK, and hardware failed to communication failed).

4.1.2.13 Put HAR in Maintenance Mode (Use Case)

A user with proper functional rights may place a HAR in maintenance mode. When placed in maintenance mode, if the HAR

was previously offline, the setup command is used to reload the HAR's slots that are configured for use in CHART. If the

HAR was previously online, the HAR's message is set to its default message. The HAR shall proceed to maintenance mode

even if attempts to control the device during this process fail. When a HAR is placed in maintenance mode, the controlling op

center of the HAR becomes the op center of the user that performed the operation.

4.1.2.14 Put HAR Online (Use Case)

A user with appropriate privileges can put a HAR device online if it has previously been taken offline or put in maintenance

mode. This automatically turns on the HAR transmitter and makes the HAR available for control through the system. When

a HAR is placed online, the user shall be given the option to put any associated SHAZAMs online as well.

4.1.2.15 Put SHAZAM in Maintenance Mode (Use Case)

A user with proper functional rights can place a SHAZAM in maintenance mode if the SHAZAM is online or offline. When

the SHAZAM is placed in maintenance mode, an attempt is made to deactivate the SHAZAM. Even if this attempt fails, the

SHAZAM proceeds to maintenance mode and the controlling operations center of the SHAZAM is set to the operations center

of the user that performed the operation.

4.1.2.16 Put SHAZAM Online (Use Case)

A user with appropriate privileges can put a SHAZAM online if the SHAZAM is currently offline or in maintenance mode.

Putting the SHAZAM online makes it available for control through the system.

4.1.2.17 Record audio HAR Message (Use Case)

A user with appropriate privileges can record an audio message as an alternative to entering a text message. The operator's

voice will be recorded in a binary audio file format using configurable system wide audio settings. The audio format and

default settings have not yet been determined. These system wide voice recording audio setting values shall match those used

CHART R8 Detailed Design Rev 2 4-11 08/01/2011

in the text to speech conversion. Manually recorded audio will require the user to enter a description of the message to be

used in status displays.

4.1.2.18 Reset HAR (Use Case)

A user with proper privileges can reset a HAR that is in maintenance mode. Resetting a HAR clears the HAR's memory and

restores it to its factory settings. All messages previously stored in the HAR controller are lost from the controller. The

system automatically issues the setup command after the HAR is reset to restore the settings and to restore the messages that

were previously stored in the controller.

4.1.2.19 Reset HWGER02a SHAZAM to Last Known State (Use Case)

During the refresh operation on a SWG-ER02a SHAZAM, the system shall first query the current state of the device to

determine if its beacons are active or not active. If the beacons are currently in the state as desired by the system, no further

action is required. If not, the system shall set the state of the beacons to the state desired by the system and re-query the

device to determine if the device is in the proper state. If not, the system shall indicate the SHAZAM is hardware failed.

4.1.2.20 Reset SHAZAM to Last Known State (Use Case)

The system will periodically connect to each SHAZAM and issue a command to put the SHAZAM in the state as indicated by

the system as the last known state. This is a safe guard put in place for SHAZAM models that cannot be polled to ensure their

state remains consistent with the state desired by the system. If communications to the SHAZAM are detected to be failed the

system may issue an alert and/or a notification as specified in the alert and notification settings for the SHAZAM. If the

SHAZAM model supports detecting hardware failures, this detection shall be performed as part of resetting the SHAZAM to

the last known state. If a communication or hardware failure is detected while restting the SHAZAM to the last known state,

alerts and/or notifications will be sent to the configured operations center and notification group as set for the SHAZAM (if

any - see Set Alert and Notification Settings). Notifications will be sent to the configured group(s) (if any) on any operational

status transition (OK to hardware failed, OK to communication failed, communication failed to OK, communication failed to

hardware failed, hardware failed to OK, and hardware failed to communication failed).

4.1.2.21 Set HAR Message (Use Case)

A HAR's message is set through the execution of an event response plan or set directly by an administrator when the device is

in maintenance mode. The message activation may specify messages which were previously stored in message slots in the

CHART R8 Detailed Design Rev 2 4-12 08/01/2011

controller or a message that was created using the HAR message editor.

When activating a HAR message created by the message editor the user may choose to use the default header and trailer or

just use the message body for the entire message. Messages activated in this manner shall be loaded into the HAR controller

in the slot designated for immediate broadcast.

A HAR message activation also specifies if each associated SHAZAM should be activated or not. The selected notifiers will

be activated only after the message has been activated on the HAR.

The system shall support sending messages to at least 4 HARs at one time; each constituent of a synchronized HAR counts as

1 HAR toward this total. A synchronized HAR is comprised of individual constituent HARs that play the same message at

the same time. Each constituent can be specified as being active or inactive; messages activated on a synchronized HAR are

only activated on the active constituents.

4.1.2.22 Setup HAR (Use Case)

An administrator can issue the setup command on a HAR that is in maintenance mode. The setup command causes the

CHART II system to load its configuration values for the HAR into the device. The setup command also causes all messages

that are currently specified to be stored in the HAR controller to be restored into the device.

4.1.2.23 System (Actor)

The System actor represents any software component of the CHART system. It is used to model uses of the system which are

either initiated by the system on an interval basis, or are an indirect by-product of another use case that another actor has

initiated.

4.1.2.24 Take HAR Offline (Use Case)

A user with appropriate privileges can take a HAR offline to disallow control of the HAR through the system. When a HAR

is taken offline, the HAR's transmitter is turned off and all associated SHAZAM devices are also taken offline.

4.1.2.25 Take SHAZAM Offline (Use Case)

A user with appropriate privileges can take a SHAZAM offline if it is online or in maintenance mode. A SHAZAM that has

been taken offline is not able to be controlled through the system (activated or deactivated) until the SHAZAM is put online.

CHART R8 Detailed Design Rev 2 4-13 08/01/2011

Taking a SHAZAM off line does not affect any HAR that has been associated with the SHAZAM.

4.1.2.26 Turn Off HAR Transmitter (Use Case)

A user with appropriate privileges can turn off the transmitter of a HAR that is in maintenance mode.

4.1.2.27 Turn On HAR Transmitter (Use Case)

A user with appropriate privileges can turn on the transmitter of a HAR that is in maintenance mode.

4.1.2.28 Update HAR Message DateTime (Use Case)

The system shall periodically update HAR messages that are currently active and contain a date/time field. The date/time

field shall be updated based on the current time of day and the format specified in the date/time field.

4.1.2.29 UseDMSAsSHAZAM (Use Case)

A user with appropriate privileges may opt to control DMS as a SHAZAM for a HAR. In such a case, a pre-configured

message is set on the DMS that informs the traveler about the HAR message being broadcast, with the DMS beacons flashing.

4.1.2.30 View HAR Slot Usage (Use Case)

A user may view the current HAR controller slot usage for the default header, default trailer, and default message. This shall

include the message that is stored in the slot, and the total time used by all messages stored in the controller, the total time

supported by the controller, and the total recording time remaining. The system shall allow the user to listen to the default

header, default, trailer, and default message. The system shall allow the user to monitor (listen to the actual audio as played

from the HAR controller) the default header, default trailer, and default message if the HAR is an AP55 HAR or the HAR is a

DR1500 HAR that uses Telephony communications.

4.1.3 ViewHARandSHAZAM (Use Case Diagram)

This diagram shows use cases related to viewing HAR and SHAZAM devices within the system.

CHART R8 Detailed Design Rev 2 4-14 08/01/2011

Sort List Filter ListSelect List Columns

View HAR List

View SHAZAM List

View HAR Details

View SHAZAM

Details

Operator

Changed in R8:

«include»
«include»«include»

«include» «include» «include»

Figure 4-3. ViewHARandSHAZAM (Use Case Diagram)

4.1.3.1 Filter List (Use Case)

The system allows lists to be filtered to include only rows that have specified values in a column. Multiple filters can be used

on a single list, and the system allows all filters to be removed to view all items in the list. Columns that have a large range of

possible values may not support filtering (for example a column that displays a device message).

4.1.3.2 Operator (Actor)

An operator is a user of the system who has been assigned a valid username/password combination and granted roles for

system access.

CHART R8 Detailed Design Rev 2 4-15 08/01/2011

4.1.3.3 Select List Columns (Use Case)

The system allows the user to choose which columns are to appear in a list and which columns are to be hidden. Certain

columns such as the name of an item may not be permitted to be hidden.

4.1.3.4 Sort List (Use Case)

The system allows lists to be sorted using values in a specific column of the list. Ascending and descending sorts are

supported. Not all columns support sorting.

4.1.3.5 View HAR Details (Use Case)

The system shall allow a user with appropriate rights to view the details of a HAR device. The details will include the current

message, traffic events using the HAR (if any), associated notifiers (if any), and the status. The status includes the HAR

transmitter state (on/off), the mode (online, offline, maint mode) and operational status (OK, Comm. Failed, Hardware

Failed). The details shall also include the current message clips stored as the default header, default trailer, and default

message. The recording capacity status shall be shown and also a timestamp that shows the last time a setup command has

been successfully executed on the HAR. The details page also contains configuration information for the HAR, which will

include the currently selected communication method (Telephony Port or TCP/IP). When telephony port communications are

selected, the details will include the default phone number for the device, the access code, port manager timeout, and the list

of port managers and associated phone numbers used to access the HAR via each selected port manager. When TCP/IP

communications are selected, the IP address and port shall be shown. Device phone numbers, access codes, port manager

timeouts, port type, and IP addresses/ports are considered sensitive data and shall only be shown if the user posesses the

proper user right to view the sensitive data for the device (based on the device's owning organization). Additional status and

configuration information is included for DR1500 HARs that use TCP/IP communications. The additional status information

includes the timestamp when the HAR was last found to have a status mismatch with its last commanded state. Other details

include the power status, the DC voltage, broadcast monitor percent, mode, sub-mode, sync mode, DCC module version

information, HAR module version information, HAR timestamp, and transmitter status. The transmitter status of a DR1500

includes set power, forward power, reflected power, voltage standing wave ratio (VSWR), and modulation percent. The

additional configuration information shown for a DR1500 HAR that uses TCP/IP communications includes an indicator that

shows if automatic polling is enabled, the polling interval, the alerts and notification settings, and the hardware detection

failure settings. The hardware failure detection settings include the minimum voltage and maximum VSWR.

CHART R8 Detailed Design Rev 2 4-16 08/01/2011

4.1.3.6 View HAR List (Use Case)

The system will allow a user with appropriate rights to view the list of HARs defined in the system. Data shown for each

HAR will include the name, location, current message, status, list of active notifiers (if any), list of traffic events using the

HAR (if any), route, county, direction, milepost, owning organization, maintaining organization, port managers, frequency,

call sign, connection site, and an indicator of whether or not the HAR is to be displayed on the map. To save screen space, the

visible columns will be selectable. Several columns will be hidden by default to save space. The user will be able to sort the

HAR list by any of the columns listed above. The user will be able to filter the HAR list by any of the columns listed above

except name, location, and milepost.

4.1.3.7 View SHAZAM Details (Use Case)

The system shall allow a user with appropriate rights to view the details of a SHAZAM device. The details shown shall

include the name, model (Viking RC2A or HWG-ER02a), static message displayed on the SHAZAM sign, owning

organization, maintaining organization, network connection site, location, and communication settings. The communication

settings shall indicate if a telphony port or tcp/ip is used to communicate with the SHAZAM. When a telephony port is used,

the system shall display the default phone number, access code, port manager timeout and port managers (with phone

numbers to be used to connect to the SHAZAM from the port manager). When TCP/IP is used, the system shall display the IP

address and port used by the SHAZAM. Device phone numbers, access codes, port manager timeouts, port type, IP addresses

and ports are considered sensitive information and will only be shown if the user has the right to view sensitive information

for the SHAZAM (based on its owning organization). The auto-refresh settings shall be shown for the SHAZAM, indicating

if auto-refresh is enabled and the interval at which auto-refresh is performed. The details will also include the relay being used

by a SWG-ER02a SHZAM.

4.1.3.8 View SHAZAM List (Use Case)

The system will allow a user with appropriate rights to view the list of SHAZAMs defined in the system. Columns will

include the name, location, associated HAR, beacon state, operational status, last update time, route, county, direction,

milepost, owning organization, maintaining organization, port managers, connection site, and the show on map indicator. To

save screen space, the visible columns will be selectable. Several of the columns will be hidden by default to save space. The

user will be able to sort the SHAZAM list by any of the displayed columns. The user will be able to filter the SHAZAM list

by any of the columns except name, location, associated HAR, last update time, and state milepost. The port managers

column will only contain data for SHAZAMs set to use Telephony port communications.

CHART R8 Detailed Design Rev 2 4-17 08/01/2011

CHART R8 Detailed Design Rev 2 5-1 08/01/2011

5 Detailed Design – IP HAR and IP SHAZAM

5.1 Human-Machine Interface

5.1.1 HAR

The human-machine interface for HAR devices is changed in R8 to allow TCP/IP

communications to be specified for DR1500 HAR devices. This includes the ability to enable

polling for DR1500 HARs that use TCP/IP communications, and the ability to set thresholds that

determine when the system should consider a DR1500 HAR hardware failed when polled.

Additionally, device failure alerts and notifications can be enabled for HAR devices. See the

sections below for details on portions of the HAR human-machine interface that are new or

changed for R8.

5.1.1.1 Add HIS DR1500 HAR

When viewing the HAR list, a new HIS DR1500 HAR can be added to the system by clicking

the Add HIS DR1500 HAR link near the top of the page (see below).

Figure 5-1 Add HIS DR1500 HAR Link

Several sections of the form used to add a HIS DR1500 HAR to the system have been changed

for R8, and two sections have been added to the form. See below for a description of each

section the Add HIS DR1500 HAR form.

CHART R8 Detailed Design Rev 2 5-2 08/01/2011

5.1.1.1.1 General HAR Information

There are no changes to this section of the ADD HAR form for R8.

Figure 5-2 Add HAR - General HAR Information

5.1.1.1.2 Location

There are no changes to this section of the Add HAR form for R8.

Figure 5-3 Add HAR - Location

5.1.1.1.3 Default Clips

There are no changes to this section of the Add HAR form for R8.

Figure 5-4 Add HAR - Default Clips

5.1.1.1.4 Device Control Communications

This section of the Add HAR form is changed for R8 to allow Telephony or TCP/IP

communications to be selected for a DR1500 HAR. When telephony port communications are

CHART R8 Detailed Design Rev 2 5-3 08/01/2011

selected, this section of the form contains fields that apply to telephony communications. There

are no changes to the telephony port fields for R8 (see below).

Figure 5-5 Add HAR - Device Control Communications, Telephony

When a port type of TCP/IP is selected, this section of the form changes to include fields that

apply to TCP/IP communications. This is new for R8 (see below).

Figure 5-6 Add HAR - Device Control Communications, TCP/IP

The IP Address is the address as configured for the HAR device. The Port is the port where the

HAR device listens for connections. The default port for a DR1500 HAR is 200. When TCP/IP

communications are used for a DR1500, polling can be enabled, when when polling is enabled

the polling interval can be specified. The default polling interval is 5 minutes. When device

polling is enabled, CHART will connect to the HAR periodically and query status values from it.

CHART will inspect the status values to attempt to determine if the HAR is broadcasting the

message as specified in CHART (or is blank as specified in CHART). If CHART determines the

device is not broadcasting the desired message (or is not blank as desired), CHART will

automatically issue a setup command to the HAR to set its message and transmitter status as last

commanded by CHART. During polling, CHART will also attempt to detect if the HAR is

hardware failed, and if so will change the operational status of the HAR to hardware failed in

CHART.

CHART R8 Detailed Design Rev 2 5-4 08/01/2011

5.1.1.1.5 Associated Message Notifiers

There are no changes to this section of the Add HAR form for R8 (see below).

Figure 5-7 Add HAR - Associated Message Notifiers

5.1.1.1.6 DR1500 Hardware Failure Detection Settings

The DR1500 Hardware Failure Detection Settings section is new for R8. This section only

appears when the port type in the control line communication settings section is set to TCP/IP

because status can only be obtained from the DR1500 when using TCP/IP communications.

These settings are thresholds used by CHART to determine if the status values obtained while

polling the HAR are within acceptable ranges, and if not, CHART will set the HAR to an

operational status of hardware failed.

Figure 5-8 Add HAR - DR1500 Hardware Failure Detection Settings

The DC Voltage Threshold is the minimum DC voltage allowed. If a status poll detects a value

lower than this, the HAR will be considered hardware failed. The voltage standing wave ratio

threshold is the maximum allowable ratio. If the HAR device reports a ratio higher than the

value specified, CHART will consider the HAR hardware failed.

5.1.1.1.7 Alert and Notification Settings

The alert and notification settings section of the Add HAR form is new for R8. This section

allows device failure alerts and notifications to be enabled for the HAR. Two types of device

failure are supported in the CHART system, communications failure and hardware failure. The

alert and notification settings section will appear for all models of HAR, despite their method of

communication (Telephony or TCP/IP). Only the DR1500 HAR when operated with TCP/IP

communications will be capable of becoming hardware failed, and therefore the hardware failure

alert and notification selections will not have an effect on other HARs present at the time R8 is

released. There is no harm setting these values for other HARs, however, and if at some point in

the future CHART becomes capable of detecting hardware failures for those HARs, the hardware

failure settings in this section of the form would in fact be used.

CHART R8 Detailed Design Rev 2 5-5 08/01/2011

Figure 5-9 Add HAR - Alert and Notification Settings

The Operations Center to alert on Comm Failure is just as the field states; when a

communications failure is detected for the HAR, an alert will be raised and assigned to the

specified operations center if any. When set to “None”, comm failure alerts for the HAR are

disabled. The Operations Center to alert on Hardware Failure is also just like its name states;

when a harware failure is detected for the HAR, an alert will be raised and assigned to the

selected operations center, if any. When set to “None”, hardware failure alerts for the HAR are

disabled. The Notification group to notify on Comm Failure is the group that will receive a

notification when the HAR becomes comm failed. The selected group will also receive

notification when the HAR transitions from Comm Failed to OK, or from Comm Failed to

Hardware Failed. When set to “None”, all comm failure notifications for the HAR are disabled.

The Notification group to notify on Hardware Failure is the group that will be notified if the

HAR becomes hardware failed. The selected group is also notified if the HAR transitions from

Hardware Failed to OK, or from Hardware Failed to Comm Failed. Hardware failure

notifications are disabled if the selection is set to “None”.

5.1.1.1.8 Site Selection

 There are no changes to this section of the Add HAR form for R8.

Figure 5-10 Add HAR - Site Selection

CHART R8 Detailed Design Rev 2 5-6 08/01/2011

5.1.1.2 HAR Details

5.1.1.2.1 Actions

The Actions section of the HAR details page is changed for R8 to include a “Poll Now” link for

the HAR if the HAR is a DR1500 that is configured to use TCP/IP communications and the

HAR is online. Clicking the Poll Now link will cause the command status page to be shown

where the results of the polling of the device will be shown.

Figure 5-11 HAR Details - Actions

5.1.1.2.2 Message

The Message section of the HAR details page contains no changes for R8.

Figure 5-12 HAR Details - Message

CHART R8 Detailed Design Rev 2 5-7 08/01/2011

5.1.1.2.3 Used By

The Used By section of the HAR details page is unchanged in R8.

Figure 5-13 HAR Details - Used By

5.1.1.2.4 Associated Message Notifiers

There are not changes to the Associated Message Notifiers section of the HAR Details page for

R8.

Figure 5-14 HAR Details - Associated Message Notifiers

5.1.1.2.5 Status

The status section of the HAR details page is updated in R8 to add new status fields. The

following existing fields are unchanged for R8: Controlling Center, Transmitter Status (on/off),

Mode, Status, Last Status Change, and Last Contact. The Last Setup field is new for R8 and

applies to all HARs. This is the last time a setup command was successfully issued to the HAR.

The remaining fields are all new for R8 and only apply to the DR1500 HAR, and only when the

DR1500 is operated using TCP/IP communications. The screen shot below is for a DR1500

HAR that is set to use TCP/IP communications.

CHART R8 Detailed Design Rev 2 5-8 08/01/2011

Figure 5-15 HAR Details - Status

The Last Status Mismatch Detected field is the time stamp that indicates the last time the HAR

was polled and CHART determined its message / transmitter on/off status did not match the

status as CHART last commanded. When a status mismatch is detected, CHART automatically

issues a setup command for the HAR. The Power field lists the status of the power of the

DR1500 and can be either ON or OFF. The DC Voltage is the voltage reading from the HAR. If

this value as read from the HAR is outside the threshold as specified for the HAR in CHART, an

indicator will be shown to indicate CHART considers the HAR hardware failed because of the

value, and lists the threshold that was violated. The Broadcast Monitor field is the current

broadcast monitor percent of full scale. The HAR Mode field indicates the mode in which the

HAR is operating, which includes Off, Play List, Alert, Live, and Aux. This value will normally

be set to Play List. The HAR Sub-Mode field indicates if the HAR is operating in a

synchronized or unsynchonized mode. The HAR Sync Mode field indicates if conditions exist to

allow the HAR to operate in synchronized mode. This value will be on or off. The transmitter

status (detailed) fields show the transmitter related readings from the HAR; set power, forward

power, reflected power, VSWR, and modulation percent. If the VSWR is outside the allowable

theshold as configured for the HAR, a message will appear next to the value to indicate the

reading is causing CHART to consider the HAR hardware failed. The DCC IP Controller

Version field shows the firmware version information for the HAR’s digital communications

CHART R8 Detailed Design Rev 2 5-9 08/01/2011

controller, the component of the HAR that enables TCP/IP communications. The DR1500

Version Info contains version information for the main DR1500 component. The DR1500 Time

Stamp is a time stamp read from the HAR that indicates the last time a control command was

received by the HAR.

5.1.1.2.6 Clips Stored In HAR

There Clips Stored In HAR section of the HAR details page is changed for R8 such that the

Monitor links (shown in the image below) will not appear if the HAR is a DR1500 that is

configured to communicate using TCP/IP.

Figure 5-16 HAR Details - Clips Stored in HAR

5.1.1.2.7 Recording Capacity Status

There are no changes to the Recording Capacity Status section of the HAR details page for R8.

Figure 5-17 HAR Details - Recording Capacity Status

CHART R8 Detailed Design Rev 2 5-10 08/01/2011

5.1.1.2.8 Configuration

There are no changes to the Basic Settings and Location sections of the HAR configuration

portion of the details page.

Figure 5-18 HAR Details - Configuration

The Control Line Communication Settings section is changed for R8 to show the port type

(TCP/IP or Telephony) and to show the communication settings specific to the port type. When

the port type is TCP/IP, polling settings are also shown. The DR1500 Hardware Failure

Detection Settings section is new for R8 and applies only to the DR1500 HAR model, and only

when configured to utilize TCP/IP communications. It shows the configured minimum and

maximum values, as applicable, for the status reading from the HAR that are used to determine if

CHART should consider the HAR hardware failed. The Alerts and Notifications section is also

new for R8. This section applies to all HAR models regardless of communications port type. It

shows the operations centers to be alerted of communication and hardware failures, and the

notification groups to be notified of communication and hardware failures (if any).

CHART R8 Detailed Design Rev 2 5-11 08/01/2011

5.1.1.3 Edit Control Line Communication Settings

The Edit Control Line Settings form is accessed by clicking the Edit link on the HAR details

page next to the Control Line Communication Settings section heading:

Figure 5-19 HAR Details - Edit Control Line Communication Settings Link

Figure 5-20 Edit HAR Control Line Settings Form, Telephony

This form is changed in R8 to allow selection of the Control Port Type. When Telephony is

selected, as shown above, the form is the same as it was prior to R8. When TCP/IP is selected,

the form changes as shown below:

CHART R8 Detailed Design Rev 2 5-12 08/01/2011

Figure 5-21 Edit HAR Control Line Settings Form, TCP/IP

When TCP/IP communications are selected (supported only for the DR1500 model), the form

requires the IP Address and Port to be entered, and allows polling to be enabled. When polling is

enabled, the polling interval must be specified, in minutes.

5.1.1.4 Edit DR1500 Hardware Failure Detection Settings

The DR1500 Hardware Failure Detection Settings form is accessed by clicking on the Edit link

next to the DR1500 Hardware Failure Detection Settings section header on the HAR details page

for a DR1500 HAR. Note that this section only appears if the DR1500 is set for control via

TCP/IP.

Figure 5-22 Edit DR1500 Hardware Failure Detection Settings Link

After clicking the Edit link, the following form is shown:

CHART R8 Detailed Design Rev 2 5-13 08/01/2011

Figure 5-23 Edit DR1500 Hardware Failure Detection Settings Form

Each of the 4 readings from the HAR that are used by CHART to detect a hardware failure

condition exists on this form. Minimum and Maximum values can be set as applicable to each

type of reading. Note that VSWR is specified as the left hand side of a ratio, where the right

hand side is always 1. So for example you could specify a ratio of 1:1, 2:1, 20:1, etc. by entering

1, 2, or 20 in the entry field (the :1 part of the ratio is fixed and can’t be changed).

5.1.1.5 Edit Alert and Notification Settings

The alert and notification settings form is accessed by clicking the Edit link next to the Alerts

and Notification section header on the HAR details page:

Figure 5-24 Edit HAR Alerts and Notifications Link

After clicking the Edit link, the following form is shown:

CHART R8 Detailed Design Rev 2 5-14 08/01/2011

Figure 5-25 Edit HAR Alert and Notification Settings Form

This form allows selection of an operations center to receive comm failure alerts for the HAR

and selection of an operations center to receive hardware failure alerts for the HAR. A selection

of None is available to indicate that alerts of the given type should not be generated for the HAR.

Similarly the form allows selection of the notification groups that are to receive comm failure

and hardware failure notifications. Again, a selection of None can be used to disable that

particular type of notifications. Note that notifications for HARs will be sent on each status

transition (OK, Comm Failed, and Hardware Failed).

CHART R8 Detailed Design Rev 2 5-15 08/01/2011

5.1.2 SHAZAM

5.1.2.1 Add SHAZAM

The Add SHAZAM form is accessed by click the Add SHAZAM link on the SHAZAM list

page, as shown below:

Figure 5-26 Add SHAZAM Link

After clicking the Add SHAZAM link, the Add SHAZAM form is shown. Each section of this

form is discussed in the sections below.

5.1.2.1.1 General SHAZAM Information

Figure 5-27 Add SHAZAM - General SHAZAM Information

The General SHAZAM information section of the Add SHAZAM form is changed in R8 to

include a model select list. The available selections are Viking RC2A and HWG ER02a. The

Viking RC2A was the only SHAZAM model supported by CHART prior to R8 and thus model

selection was not needed. New for R8 is support for the HWG ER02a SHAZAM. When the

ER02a SHAZAM model is selected the Relay Selection radio buttons (new for R8) appear to

allow the user to specify which of the 2 electronic relays on the ER02a are connected to the

beacons on the SHAZAM sign. The Relay Selection radio buttons do not appear on this form

when the Viking RC2A model is selected.

CHART R8 Detailed Design Rev 2 5-16 08/01/2011

5.1.2.1.2 Location

There are no changes to the Location section of the Add SHAZAM form for R8.

Figure 5-28 Add SHAZAM - Location

5.1.2.1.3 Device Communications

The Device Communications section of the Add SHAZAM form is changed for R8 to add the

Port Type of TCP/IP. The Port Type field is not changeable because the Viking RC2A

SHAZAM supports only Telephony port communications and the HWG-ER02a SHAZAM

supports only TCP/IP communications. When the user selects the model, the Device

Communications section will automatically change to communications port type supported by

the SHAZAM model.

Figure 5-29 Add SHAZAM - Device Communications, Telephony

When the Viking RC2A model is selected, the Device Communications section of the Add HAR

form (shown above) is unchanged for R8, except for the Port Type which is changed to a radio

button in R8. (Prior to R8 it was just static text that said “Telephony”.) When the HWG-ER02a

model is selected, the Device Communications section automatically changes such that TCP/IP

is selected, as shown below.

CHART R8 Detailed Design Rev 2 5-17 08/01/2011

Figure 5-30 Add SHAZAM - Device Communications, TCP/IP

The Port Type of TCP/IP is new for R8. When TCP/IP is selected, the IP Address and Port must

be specified. Refresh, which existed prior to R8 for Telephony port communications also applies

to TCP/IP communications.

5.1.2.1.4 Alert and Notification Settings

The Alert and Notification settings section of the Add SHAZAM page is new for R8. It allows

the operations centers to be set that are to receive an alert when CHART detects that the

SHAZAM is comm failed or hardware failed. This section of the form also allows notification

groups to be selected for both comm failure notifications and hardware failure notifications. A

value of “None” is allowed to disable the alerts and/or notifications. Notifications related to

SHAZAMs are sent on any status change of the SHAZAM; OK to Comm Failed, Comm Failed

to OK, Comm Failed to Hardware Failed, OK to Hardware Failed, Hardware Failed to OK, and

Hardware Failed to Comm Failed. Note that only the HWG-ER02a SHAZAM is capable of

being hardware failed in R8 – the Viking RC2A does not support querying its status. If a Viking

RC2A SHAZAM has hardware failure alerts or notifications enabled, this will not cause any

problems in the system but these alerts and notifications will never be generated for that model

SHAZAM.

5.1.2.1.5 Site

The Site section of the Add SHAZAM page is unchanged for R8.

Figure 5-31 Add SHAZAM - Site Selection

CHART R8 Detailed Design Rev 2 5-18 08/01/2011

5.1.2.2 SHAZAM Details

5.1.2.2.1 Actions

The actions section of the SHAZAM details page is unchanged for R8. When online the

available actions (shown below) include the ability to refresh the SHAZAM by setting it to its

last commanded state (activated or deactivated). When this is done for a HWG-ER02a

SHAZAM (which supports querying its status), CHART has the the ability to detect if the

SHAZAM is hardware failed, so it is possible that the SHAZAM’s operational status may

change after issuing this command.

Figure 5-32 SHAZAM Details - Actions, Online

When the SHAZAM is in Maintenance Mode, the Actions section includes the ability to activate

or deactivate the SHAZAM’s beacons. Like the refresh command, when the activate or

deactivate commands are issued CHART queries the SHAZAM after issuing the command to

determine if it is indeed in the commanded state, and if not CHART will set the device to a status

of hardware failed.

Figure 5-33 SHAZAM Details - Actions, Maint Mode

CHART R8 Detailed Design Rev 2 5-19 08/01/2011

5.1.2.2.2 Status

The Status section of the SHAZAM details page is changed for R8 to show the actual beacon

status (as queried from the device) when the SHAZAM model is HWG-ER02a. The existing

Beacons Enabled field continues to indicate whether or not CHART is set to enable the beacons;

the Beacon Status may not match this, which would be the case if there is a hardware failure.

Only the Beacons Enabled field will be shown when the SHAZAM model is Viking RC2A, for

CHART cannot query the Viking RC2A to determine its actual beacon status.

5.1.2.2.3 Configuration

The Configuration section of the SHAZAM details page contains many changes for R8. A new

sub-section has been added to indicate the model of the SHAZAM. The Basic Configuration

sub-section is changed to show the relay selection if the SHAZAM is a HWG ER02a model.

The Location sub-section of the Configuration section is unchanged in R8. The Communication

Settings sub-section is changed in R8 to show information pertaining to TCP/IP communications

when the port type is TCP/IP (which is the only port type supported by the HWG ER02a). The

Alert And Notifications section is new for R8 and applies to all SHAZAMS. It shows the

currently configured operation centers that are to receive alerts for the SHAZAM and the

currently configured groups that are to receive notifications.

CHART R8 Detailed Design Rev 2 5-20 08/01/2011

Figure 5-34 SHAZAM Details, Configuration

5.1.2.3 Edit Model

The Edit Model form is accessed by clicking the “change” link next to the model name in the

Model section of the SHAZAM details page (see below). This link is only available if the

SHAZAM is offline.

Figure 5-35 SHAZAM Change Model Link

After clicking the change link, the Change Model Type page is shown (see below). The page

contains a single select box to allow the user to select the model. A warning on this page

reminds the user that changing the model may require changes to the basic settings and/or

communication settings. This is due to the fact that the Viking RC2A supports only Telephony

communications and the HWG-ER02a supports only TCP/IP communications. When switching

models, it is likely that the settings for the associated communications method were not set up

previously or need changing. Additionally the HWG-ER02a has a Relay Selection setting within

the basic configuration that may need to be changed if changing the model from a Viking RC2A

to an HWG-ER02a.

CHART R8 Detailed Design Rev 2 5-21 08/01/2011

Figure 5-36 SHAZAM Change Model Type Form

5.1.2.4 Edit Basic Configuration

The Edit Basic Configuration form is accessed by clicking the Edit link next to the Basic

Configuration section header on the SHAZAM details page as shown below.

Figure 5-37 SHAZAM Edit Basic Configuration Link

After clicking the Edit link, the Edit Basic Settings form is shown (see below). This form is

changed for R8 to include the model name, which is a view only field. When the model is

HWG-ER02a, a new field for R8 is shown to allow the Relay to be selected.

CHART R8 Detailed Design Rev 2 5-22 08/01/2011

Figure 5-38 SHAZAM Edit Basic Settings Form

5.1.2.5 Edit Communications Settings

The Edit Communications Settings form is accessed by clicking the Edit link next to the

Communications Settings section header on the SHAZAM details page.

After clicking the Edit link, the Edit Comm Settings form is shown. This form is changed in R8

to support TCP/IP settings. The Port Type field is read-only and is based on the SHAZAM

model. The HWG-ER02a supports only TCP/IP communications while the Viking RC2A

supports only Telephony communications. When this form is accessed for a Viking RC2A

SHAZAM, the form is unchanged. When accessed for a HWG-ER02a SHAZAM, the form

allows the IP address and port to be set (see below). The Refresh Enabled and Refresh Interval

fields apply to both models.

CHART R8 Detailed Design Rev 2 5-23 08/01/2011

Figure 5-39 SHAZAM Edit Comm Settings Form

5.1.2.6 Edit Alerts and Notifications Settings

The Edit Alerts and Notifications Settings form is accessed by clicking the Edit link next to the

Alerts and Notifications section heading on the SHAZAM details page.

After clicking the Edit link, the Edit Alert and Notifications Settings form is shown. The user

can choose the operations center that is to receive comm failure alerts and the operations center

to receive hardware failure alerts. The user can also select the group to receive comm failure

notifications and the group to receive hardware failure notifications. Any of the selections can

be set to “None” to disable that type of alert or notification.

CHART R8 Detailed Design Rev 2 5-24 08/01/2011

Figure 5-40 SHAZAM Alert and Notification Settings Form

CHART R8 Detailed Design Rev 2 5-1 08/01/2011

5.2 System Interfaces

The System Interfaces package models the CHART IDL.

5.2.1 Class Diagrams

5.2.1.1 AlertManagement (Class Diagram)

This class diagram shows the system interfaces that make the AlertManagement capability of CHART2 system.

M O DI FI ED FO R R8
ADDED HAR AND
SHAZAM DEVI CE
TYPES

Ext ernal Connect i onAl ert
«int er f ace»

Ext ernal Event Al ert
«int er f ace»

Tol l Rat eAl ert
«int er f ace»

Travel Ti meAl ert
«int er f ace»

1

1

1

1

1

1

1

1

Ext ernal Connect i onAl ert Dat a
«st r uct »

Ext ernal Event Al ert Dat a
«st r uct »

Travel Ti meAl ert Dat a
«st r uct »

Tol l Rat eAl ert Dat a
«st r uct »

Al ert Fact ory
«int er f ace»

Uni quel yI dent i f i abl e
«int er f ace»

Al ert St at e
«enumer at ion»

Al ert Creat i onResul t
«dat at ype»

Al ert TypeDi abl edExcept i on
«except ion»

1

11

1

1

Act ionDat a is a union, wit h
Act ionType as t he discr im inat or .
O penEvent Act ionDat a is t he only
possible t ype.

Ext endedAl ert Dat a
«dat at ype»

Al ert Dat a
«dat at ype»

Al ert Hi st ory
«dat at ype»

Al ert Act i on
«enumer at ion»

G eneri cAl ert
«int er f ace»

Devi ceFai l ureDevi ceType
«enumer at ion»

Devi ceFai l ureAl ert
«int er f ace»

Devi ceFai l ureAl ert Dat a
«st r uct »

Dupl i cat eEvent Al ert
«int er f ace»

Dupl i cat eEvent Al ert Dat a
«st r uct »

Event St i l l O penAl ert
«int er f ace»

Event St i l l O penAl ert Dat a
«st r uct »

Unhandl edResourcesAl ert
«int er f ace»

Unhandl edResourcesAl ert Dat a
«dat at ype»

11

11

11

11

11 *1

1

1

1

1

1

1

1

1

Execut eSchedul edAct i onsAl ert
«int er f ace» Execut eSchedul edAct i onsAl ert Dat a

Act i onDat a
«union»

*1

Al ert
«int er f ace»

Al ert Type
«enumer at ion»

Al ert Event Type
«enumer at ion»

Al ert I nf o
«dat at ype»

Al readyAt M axVi si bi l i t yExcept i on
«except ion»

1

1

1

1

1

Devi ceFai l ureType
«enumer at ion»

1

1

1

1

get Aler t s() : Aler t I nf o[]
get O penAler t I ds() : I dent if ier []
cr eat eDeviceFailur eAler t (t oken : AccessToken, deviceI d : I dent if ier , desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Cr eat ionResult
cr eat eDuplicat eEvent Aler t (t oken : AccessToken, older Event I d : I dent if ier , newer Event I d : I dent if ier ,
 desc st r ing, init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Cr eat ionResult
cr eat eEvent St illO penAler t (t oken : AccessToken, event I d : I dent if ier , desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Cr eat ionResult
cr eat eG ener icAler t (t oken : AccessToken, desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Cr eat ionResult
cr eat eUnhandledResour ceAler t (t oken : AccessToken, deviceI d : I dent if ier , desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Cr eat ionResult
cr eat eExecut eScheduledAct ionsAler t (t oken : AccessToken, scheduleI d: I dent if ier ,
 execAct ionDat aList : Act ionDat a[] , desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Cr eat ionResult
cr eat eExt er nalConnect ionAler t (t oken : AccessToken, ext ConnI d : I dent if ier , isWar ning : boolean,
 changeTim eSecs: long, conf ir m Tim eSecs: long, desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Cr eat ionResult
cr eat eExt er nalEvent Aler t (t oken : AccessToken, event I d : I dent if ier , f ir st Aler t RuleM et I d : I dent if ier ,
 desc st r ing, init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Cr eat ionResult
cr eat eTollRat eAler t (t oken : AccessToken, r out eI d : I dent if ier , desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Cr eat ionResult
cr eat eTr avelTim eAler t (t oken : AccessToken, r out eI d : I dent if ier , t r avelTim eSecs: int ,
 t r avelTim eEf f Secs: long, t r avelTim eAler t Lim it Secs: int , desc st r ing,
 init ialVisibilit y : Aler t M anagem ent G r oup[]) : Aler t Cr eat ionResult

get I D()
get Nam e()

Aler t Added
Aler t Changed
Aler t Delet ed

ALERT_TYPE_G ENERI C_ALERT
ALERT_TYPE_UNHANDLED_RESO URCES
ALERT_TYPE_DEVI CE_FAI LURE
ALERT_TYPE_DUPLI CATE_EVENT
ALERT_TYPE_TRAFFI C_EVENT_STI LL_O PEN
ALERT_TYPE_EXECUTE_SCHEDULED_ACTI O NS
ALERT_TYPE_EXTERNAL_CO NNECTI O N
ALERT_TYPE_EXTERNAL_EVENT
ALERT_TYPE_TO LL_RATE
ALERT_TYPE_TRAVEL_TI M E

get Type() : Aler t Type
get Dat a() : Aler t Dat a
get Ext endedAler t Dat a() : Ext endedAler t Dat a
addCom m ent (t oken : AccessToken, com m ent : st r ing) : void
escalat e(t oken : AccessToken, com m ent : st r ing) : void
accept (t oken : AccessToken) : void
accept Wit hDet ails(t oken : AccessToken, r em inder Tim eM sec : unslgned long,
 com m ent : st r ing) : void
set Accept Tim eout (AccessToken t oken, r em inder Tim eM sec : unslgned long,
 com m ent : st r ing) : void
unaccept (t oken : AccessToken) : void
delay(t oken : AccessToken) : void
delayWit hDet ails(t oken : AccessToken, r em inder Tim eM sec : unslgned long,
 com m ent : st r ing) : void
set DelayTim eout (AccessToken t oken, r em inder Tim eM sec : unslgned long,
 com m ent : st r ing) : void
undelay(t oken : AccessToken) : void
close(t oken : AccessToken, com m ent : st r ing) : void

aler t I d : I dent if ier
t heAler t : Aler t
t ype : Aler t Type
ext Aler t Dat a : Ext endedAler t Dat a
cr eat ionWar ningM essage : st r ing

r eason : st r ing

r eason : st r ing

id : I dent if ier
t ype : Aler t Type
r ef : Aler t

ALERT_STATE_NEW
ALERT_STATE_ACCEPTED
ALERT_STATE_DELAYED
ALERT_STATE_CLO SED

get FailedDeviceI d() : I dent if ier
get DeviceType() : DeviceFailur eDeviceType
get DeviceFailur eAler t Dat a() : DeviceFailur eAler t Dat a

get Newer Event I d() : I dent if ier
get O lder Event I d() : I dent if ier
get Duplicat eAler t Dat a() : Duplicat eEvent Aler t Dat a

get Event I d() : I dent if ier
get Event St illO penAler t Dat a() : Event St illO penAler t Dat a

aler t I d: I dent if ier
descr ipt ion: st r ing
t ype: Aler t Type
descr ipt ion: st r ing
st at e: Aler t St at e
r esponsibleUser : st r ing
r esponsibleCent er I nf o: O pCent er I nf o
aler t Cr eat ionTim e: dat et im e
aler t Cur r ent Visibilit y: Aler t M anagem ent G r oup[]
aler t Next Visibilit y: Aler t M anagem ent G r oup[]
next Act ionTim eM sec : unsigned long
aler t Last St at eChangeTim e: unsigned long
aler t Hist or y : Aler t Hist or y[]

get O pCent er I d() : I dent if ier
get UnhandledResour cesAler t Dat a() : UnhandledResour cesAler t Dat a

FAI LURE_TYPE_CO M M _FAI L
FAI LURE_TYPE_HW_FAI L

get Execut eScheduledAct ionsAler t Dat a() : Execut eScheduledAct ionsAler t Dat a

DEVI CE_TYPE_DM S
DEVI CE_TYPE_TSS
DEVI CE_TYPE_HAR
DEVI CE_TYPE_SHAZAM

baseAler t Dat a: Aler t Dat a
event I d: I dent if er
t ypeO f FailedDevice: DeviceFailur eDeviceType
f ailur eType: DeviceFailur eType

get Ext er nalConnect ionAler t Dat a() : Ext er nalConnect ionAler t Dat a

baseAler t Dat e: Aler t Dat a
newer Event : I dent if ier
older Event : I dent if ier

t im est am p: unsigned long
st at e: Aler t St at e
act ion: Aler t Act ion
opCent er I d: I dent if ier
user : st r ing
user Com m ent : st r ing
next Act ionTim eM sec : unsigned long
addedVisibilit y: AM G List

get Ext er nalEvent Aler t Dat a() : Ext er nalEvent Aler t Dat a

baseAler t Dat a: Aler t Dat a
event I d: I dent if er

ALERT_ACTI O N_CREATE
ALERT_ACTI O N_ACCEPT
ALERT_ACTI O N_UNACCEPT
ALERT_ACTI O N_DELAY
ALERT_ACTI O N_UNDELAY
ALERT_ACTI O N_CLO SE
ALERT_ACTI O N_ADD_CO M M ENT
ALERT_ACTI O N_ESCALATE
ALERT_ACTI O N_EDI T

get TollRat eAler t Dat a() : TollRat eAler t Dat a

baseAler t Dat a: Aler t Dat a
opCent er I d: I dent if ier

baseAler t Dat a: Aler t Dat a
scheduleI d: I dent if ier
schedAct ions: Act ionDat a[]

union on Aler t Type
cont ains appr opr iat e t ype- specif ic Aler t Dat a st r uct

get Tr avelTim eAler t Dat a() : Tr avelTim eAler t Dat a

baseAler t Dat a: Aler t Dat a
ext ConnI d: I dent if ier
isWar ning: boolean
aler t St at usChangeTim eSecs: long
aler t St at usConf ir m Tim eSecs: long

baseAler t Dat a: Aler t Dat a
ext Event I d: I dent if ier
f ir st Aler t RuleM et I d: I dent if ier

discr im inat or : Act ionType
openEvent Act ionDat a: O penEvent Act ionDat a

baseAler t Dat a: Aler t Dat a
Tr avelRout eI d: I dent if ier

baseAler t Dat a: Aler t Dat a
t r avelRout eI d: I dent if ier
aler t edTr avelTim eSecs: int
aler t edTr avelTim eEf f Secs: long
t r avelTim eAler t Lim it Secs: int

CHART R8 Detailed Design Rev 2 5-2 08/01/2011

Figure 5-41. AlertManagement (Class Diagram)

5.2.1.1.1 ActionData (Class)

This IDL union holds the data used to describe a schedule action. It has been designed as a union discriminated by the

enumeration ActionType to support schedule actions to be determined in future releases of CHART. Currently the only

supported variant is the OpenEventAction.

5.2.1.1.2 Alert (Class)

This is a CORBA interface that provides access to information pertaining to an Alert and provides operations used to manage

an alert.

5.2.1.1.3 AlertAction (Class)

This IDL enumeration defines the actions that can be done to an Alert.

5.2.1.1.4 AlertCreationResult (Class)

This IDL struct represents the data that will be returned as a result of an alert creation using the AlertFactory calls. It

includes: alert id, alert CORBA reference, alert type, extended alert data, and a warning string used to describe non-fatal

conditions when creating the alert.

5.2.1.1.5 AlertData (Class)

This is a CORBA struct, defined in IDL, that contains the data that applies to all alert types.

5.2.1.1.6 AlertEventType (Class)

This IDL enumeration defines the types of CORBA Events supported in the AlertModule. Its primary use is as a

discriminator value used when handling AlertEvents. These can either be Alert Added, Changed, or Deleted.

5.2.1.1.7 AlertFactory (Class)

This IDL interface contains the operations available for an Alert Factory. The AlertFactory is responsible for creating alerts

CHART R8 Detailed Design Rev 2 5-3 08/01/2011

and storing alert information on the alerts that it created.

5.2.1.1.8 AlertHistory (Class)

This IDL struct contains information used to describe an action being done to an alert. A collection of these structs represents

the history of the alert from beginning to end.

5.2.1.1.9 AlertInfo (Class)

This IDL struct contains information about an Alert in the system. Its primary use is to be returned as part of a list of

AlertInfo objects in response to an AlertFactory's getAlerts() call.

5.2.1.1.10 AlertState (Class)

AlertState is an IDL enumeration of the four defined states for an Alert.

5.2.1.1.11 AlertType (Class)

AlertType is an IDL enumeration of the five Alert types.

5.2.1.1.12 AlertTypeDiabledException (Class)

This exception is thrown by the AlertFactory create operations if the alert type being created is disabled within the system.

(Server-side clients can ignore this alert; GUI-side clients may wish to display this to the user.)

5.2.1.1.13 AlreadyAtMaxVisibilityException (Class)

This exception is thrown by the Alert escalate() operation if the alert is already at maximum visibility (no additional AMGs

are configured in the backup set(s) of the AMG(s) in the current visibility list). Clients may wish to try escalation after receipt

of this exception (or at any time the nextVisibility array is empty), in case an administrator may have modified the backup set

of AMGs in the meanwhile.

5.2.1.1.14 DeviceFailureAlert (Class)

This IDL interface contains operations specific to a Device Failure alert. This interface is implemented by classes

representing DeviceFailureAlerts in the Chart2 System.

CHART R8 Detailed Design Rev 2 5-4 08/01/2011

5.2.1.1.15 DeviceFailureAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DeviceFailureAlert. Specific to

this alert is the traffic event id of the failed device event causing the alert. Also included is information on the device failure

type.

5.2.1.1.16 DeviceFailureDeviceType (Class)

The DeviceFailureDeviceType is an enumeration of the possible device failure types supported in a device failure alert.

5.2.1.1.17 DeviceFailureType (Class)

This enumeration lists the possible types of device failures which can be communicated by a device failure alert.

5.2.1.1.18 DuplicateEventAlert (Class)

This IDL interface contains operations specific to a Duplicate Event alert. This interface is implemented by classes

representing DuplicateEventAlertsDevice in the Chart2 System.

5.2.1.1.19 DuplicateEventAlertData (Class)

This is a CORBA struct, defined in IDL, that contains base alert data plus data specific to a DuplicateEventAlert. Specific to

this alert are the event ids of the two probable duplicate traffic events.

5.2.1.1.20 EventStillOpenAlert (Class)

This IDL interface contains operations specific to a Event Still Open alert. This interface is implemented by classes

representing EventStillOpenAlerts in the Chart2 System.

5.2.1.1.21 EventStillOpenAlertData (Class)

This is a CORBA struct, defined in IDL, that contain the base alert data plus data specific to an EventStillOpenAlert. Specific

to this alert is the id of the traffic event that is still open.

5.2.1.1.22 ExecuteScheduledActionsAlert (Class)

This IDL interface contains operations specific to aExecute Scheduled Actions alert. This interface is implemented by classes

representing ExecuteScheduledActionsAlert in the Chart2 System.

CHART R8 Detailed Design Rev 2 5-5 08/01/2011

5.2.1.1.23 ExecuteScheduledActionsAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an

ExecuteScheduledActionsAlert.

5.2.1.1.24 ExtendedAlertData (Class)

ExtendedAlertData is a union of the four type specific alert datatypes: DeviceFailureAlertData, DuplicateEventAlertData,

EventStillOpenAlertData, and UnhandledResourceAlertData. Note that the GenericAlert does not include any type specific

data. The AlertType enumeration is used as the discriminator over the data in this union.

5.2.1.1.25 ExternalConnectionAlert (Class)

This IDL interface contains operations specific to an External Connection Alert, which indicates trouble with a connection

between CHART and an external system.

5.2.1.1.26 ExternalConnectionAlertData (Class)

This IDL structure contains data specific to an External Connection Alert, e.g., the ID of the interface which is having trouble

and a flag indicating whether the connection is in failure or warning status, the timestamp it transitioned. (The GUI displays

additional data which is best acquired from the GUI's object cache.) (Text in the base AlertData structure provides a textual

description and alert management data.)

5.2.1.1.27 ExternalEventAlert (Class)

This IDL interface contains operations specific to an External Event Alert, which indicates an event has arrived from an

external system which satisfies criteria a CHART administrator has defined to flag an external event as significant enough to

warrant this alert.

5.2.1.1.28 ExternalEventAlertData (Class)

This IDL structure contains data specific to an External Event Alert, e.g., the ID of the event and the ID of the first rule found

that requested an alert be sent. (Text in the base AlertData structure provides a textual description and alert management

data.)

CHART R8 Detailed Design Rev 2 5-6 08/01/2011

5.2.1.1.29 GenericAlert (Class)

This IDL interface contains operations specific to a Generic alert. This interface is implemented by classes representing

GenericAlerts in the Chart2 System.

5.2.1.1.30 TollRateAlert (Class)

This IDL interface contains operations specific to an Toll Rate Alert, which indicates a travel route which had a currently

active toll rate no longer does in a more recently received toll rate update document from a toll rate provider. (This alert is not

sent if a toll rate expires due to an absence of any current toll rate document -- such an event would have triggered one

external connection alert and does not need to also trigger a multitude of individual toll rate alerts as well.)

5.2.1.1.31 TollRateAlertData (Class)

This IDL structure contain data specific to a Toll Rate Alert, e.g., the travel route which no longer has data for its toll rate.

(Text in the base AlertData structure provides a textual description and alert management data.)

5.2.1.1.32 TravelTimeAlert (Class)

This IDL interface contains operations specific to an Travel Time Alert, which indicates the travel time associated with a

travel route is high enough to warrant this alert.

5.2.1.1.33 TravelTimeAlertData (Class)

This IDL structure contains data specific to a Travel Time Alert, e.g., the travel time limit and the travel time which exceeded

the limit. (Text in the base AlertData structure provides a textual description and alert management data.)

5.2.1.1.34 UnhandledResourcesAlert (Class)

This IDL interface contains operations specific to a Unhandled Resources alert. This interface is implemented by classes

representing UnhandledResourceAlerts in the Chart2 System.

5.2.1.1.35 UnhandledResourcesAlertData (Class)

This is a CORBA struct, defined in IDL, that contains the base alert data plus data specific to an UnhandledResourcesAlert.

CHART R8 Detailed Design Rev 2 5-7 08/01/2011

5.2.1.1.36 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be

generated by the IdentifierGenerator to ensure uniqueness.

5.2.1.2 HARControl (Class Diagram)

This class diagram contains the interfaces used relating to the control of Highway Advisory Radio (HAR).

CHART R8 Detailed Design Rev 2 5-8 08/01/2011

HARMessageAudioClip HARMessagePrestoredClip

HARFactory

«interface»

HAR

«interface»

SharedResource

«interface»

HARSlotUsageIndicator

«enumeration»

HARSlotData

«typedef»

HARList

«typedef»

StoredMessage

«interface»

HARStatusEventInfo

«typedef»

HAREventType

«enumeration»

HARRPIData

HARConfiguration

«typedef»

1

*

*

*

*

1
1

*

1

1

1

1

1

* *

1
1

1 *

1

1

* *

1

1

1

1

*

*

HARMessage

CommEnabled

«interface»

HARMessageNotifierList

«typedef»

Header/Trailer (optional)

HARArbQueueEntry

HARMessageAudioDataClip

SharedResourceManager

«interface»

ResponsePlanItemTarget

«interface»

HARMessageNotifier

«interface»

ArbitrationQueue

«interface»

GeoLocatable

«interface»

HARConfigurationEventInfo

«typedef»

HARStatus

«typedef»

*

ISSAP55HAR

«interface»

HISDR1500HAR

«interface»

See HARControlDR1500
for details about this model.

1

1

1

Message

«interface»

HARMessageNotifierStruct

UniquelyIdentifiable

«interface»

Body

ArbQueueEntry

«valuetype»

HARMessageClip

HARMessageTextClip

HARMessageClipList

«typedef»

HARSlotNumber

«type»

HARPlanItemData

HARSlotDataList

«typedef»

AudioClipOwner

«interface»

1

1

*

*

*

1

*

createHAR(AccessToken,
 HARConfiguration) : HAR
getHARs():HARList

setHAR(HAR theHAR):void
getHARID():Identifier
setMessage(StoredMessage msg):void
getMessageID():Identifier
factory createHARPlanItemData():
 HARPlanItemData

HAR m_har
Identifier m_harID
StoredMessage m_storedMsg
Identifier m_storedMsgID
Direction m_direction

setConfiguration(AccessToken, HARConfiguration, CommandStatus):void
getConfiguration(AccessToken) : HARConfiguration
getStatus():HARStatus
putInMaintModeWithSHAZAMs(AccessToken, HARMsgNotiferIDList, CommandStatus): void
putOnlineWithSHAZAMs(AccessToken, HARMsgNotifierIDList, CommandStatus): void
setMessage(AccessToken, HARMessage, HARMsgNotifierIDList, CommandStatus):void
blank(AccessToken, CommandStatus):void
getClipInSlot(HARSlotNumber): HARMessageClip
storeSlotMessage(AccessToken, HARSlotData, CommandStatus):void
deleteSlotMessage(AccessToken, HARSlotNumber, CommandStatus):void
isBlank():boolean
isMessageActive():boolean
poll(AccessToken, CommandStatus):void
reset(AccessToken, CommandStatus):void
setup(AccessToken, CommandStatus):void
setTransmitterOff(AccessToken, CommandStatus):void
setTransmitterOn(AccessToken, CommandStatus):void
monitorBroadcast(AccessToken, long seconds, long maxChunkSize,
 AudioPushConsumer, CommandStatus):void
monitorSlot(AccessToken, long seconds, HARSlotNumber, long maxChunkSize,
 AudioPushConsumer, CommandStatus)
remove(AccessToken):void
msgNotifierDeactivated(AccessToken, Identifier notifierID): void
msgNotifierRemoved(AccessToken, Identifier notifierID): void
shouldHARNoticeBeActive(Identifier notifierID): void
setLocation(accesstoken:AccessToken,location:ObjectLocation):void

ResponsePlanItem m_responsePlanItem
HARMsgNotifierList m_notifiersToActivate

HARAdded
HARRemoved
HARStatusChanged
HARConfigurationChanged

m_alertAndNotification:DeviceAlertAndNotification
string m_name
ObjectLocation m_deviceLocation
string m_devicePhoneNumber
string m_deviceMonitorPhoneNumber
string m_deviceAccessCode
long m_maxStoredVoiceSeconds
HARMessageNotifierList m_msgNotifiers
Identifier m_owningOrgID
string m_networkConnectionSite
PortLocationData m_portLocationData
PortLocationData m_monitorPortLocationData
IPPortLocationData m_ipPortLocationData
pollingSeconds:int
pollingEnabled:boolean

HAR theHAR
Identifier id
HARConfiguration config

setHAR(HAR har):void
getHAR():HAR
setMessage(HARMessage msg):void
getMessage():HARMessage
getMsgNotifiers():HARMsgNotifierIDList
setMsgNotifiers(HARMsgNotifierIDList): void
factory createHARRPIData():HARRPIData

HAR m_har
HARMessage m_message
HARMsgNotifierList m_notifiersToActivate

Identifier id
HARStatus status

HARMessageNotifier m_harNotifier
Identifier m_harNotifierID

HARMessage m_currentMessage
HARSlotDataList m_slotData
boolean m_transmitterOn
CommMode m_commMode
OperationalStatus m_OpStatus
OpCenterInfo m_controllingOpCenter
long m_statusChangeTime
long m_lastContactTime
m_lastSetupTime:long

getHeader():HARMessageClip
getTrailer():HARMessageClip
getBody():HARMessageClipList
useDefaultHeader():boolean
useTrailer():boolean
useDefaultTrailer():boolean
setUseDefaultHeader(boolean):void
setUseTrailer(boolean):void
setUseDefaultTrailer(boolean):void
setHeader(HARMessageClip):void
setTrailer(HARMessageClip):void
setBody(HARMessageClip):void
addBodyClip(HARMessageClip):void
getBodyRunTime(): long
getTotalRunTime() : long
getNewDataRuntTime(): long
factory createHARMessage():HARMessage

HARMessageClipList m_body
boolean m_useDefaultHeader
HARMessageClip m_header
boolean m_useTrailer
boolean m_useDefaultTrailer
HARMessageClip m_trailer

factory createAudioDataClip(in AudioDataFormat format,
 in AudioData data):HARMessageAudioDataClip

AudioDataFormat m_audioDataFormat
AudioData m_audioData

DEFAULT_HEADER
DEFAULT_TRAILER
DEFAULT_MESSAGE
IMMEDIATE
USER

registerInterest(AudioClipOwner owner): void
deregisterInterest(AudioClipOwner owner): void
stream(in long maxChunkSize,
 in AudioPushConsumer consumer:void
)factory createAudioClip(Identifier,
 AudioClipManager):HARMessageAudioClip

Identifier m_audioClipID
AudioClipManager m_clipMgr

HARSlotNumber m_slotNumber
HARMessageClip m_slotMessageClip
HARSlotUsageIndicator m_slotUsageIndicator

getMessageText():string
setMessageText(string):void
stream(in AudioDataFormat format,
 in long maxChunkSize,
 in TTSPriority priority,
 in AudioPushConsumer consumer):void
factory createTextClip(string text):HARMessageTextClip

string m_messageText

getDescription():string
setDescription(string):void
getVoiceSeconds():long
setVoiceSeconds(long voiceSeconds):void
matches(HARMessageClip): boolean

string m_description
long m_voiceSeconds

getSlotNumber():HARSlotNumber
setSlotNumber(HARSlotNumber):void
stream(in AudioDataFormat format,
 in long maxChunkSize,
 in TTSPriority priority,
 in AudioPushConsumer consumer):void
factory createPrestoredClip():HARMessagePrestoredClip

HARSlotNumber m_slotNumber
Identifier m_harID

Figure 5-42. HARControl (Class Diagram)

CHART R8 Detailed Design Rev 2 5-9 08/01/2011

5.2.1.2.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which

message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they

are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current

contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is

evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the

device is put online.

5.2.1.2.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a single traffic event. (It is possible, in

the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In

such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the

ArbQueueEntryIndicator for the entry.)

5.2.1.2.3 AudioClipOwner (Class)

This interface allows the AudioClipManager to check whether there are any parties interested in an audio clip. If no

AudioClipOwners claim interest in a clip, the clip can be deleted.

5.2.1.2.4 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode

through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer

available for use through the system and automated polling (if any) is halted. When put online, a device is again available for

use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a

device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of

device are allowed to help in troubleshooting.

5.2.1.2.5 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

CHART R8 Detailed Design Rev 2 5-10 08/01/2011

5.2.1.2.6 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related

information over a localized radio transmitter, making the information available to the traveler. This interface contains

methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating

and monitoring the HAR in maintenance and online modes.

5.2.1.2.7 HARArbQueueEntry (Class)

This class is an arbitration queue entry used to set the message on a HAR on behalf of a traffic event. This entry also specifies

the HARMessageNotifiers to be activated when the message is activated.

5.2.1.2.8 HARConfiguration (Class)

This class (struct) contains configuration data for a HAR device. It is used to transmit current configuration data from the

HAR to the client, and to transmit proposed new configuration data from the client to the HAR. It is also used internally by

the HARService to maintain its configuration in memory, and is used to transmit configuration data to/from the HAR to the

HARControlDB database interface class. Device Location member has been modified for R3B3. Now it contains a detailed

location information.

5.2.1.2.9 HARConfigurationEventInfo (Class)

This class defines data (HARConfiguration, and HAR ID and reference) pushed with a HARConfigurationChanged and

HARAdded CORBA event.

5.2.1.2.10 HAREventType (Class)

This enumeration defines the types of CORBA events that are pushed on a HARControl event channel.

5.2.1.2.11 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system. It also allows a requester to acquire a list of HAR

objects under the domain of the specific HARFactory object.

5.2.1.2.12 HARList (Class)

The HARList class is a collection of HAR objects.

CHART R8 Detailed Design Rev 2 5-11 08/01/2011

5.2.1.2.13 HARMessage (Class)

This utility class represents a message which is capable of being stored on a HAR. It stores the HAR message as a HAR

message header, body and footer. The HARMessage can be configured to use the default header or can provide a custom

header clip. The trailer can be specified to use the default trailer, or no trailer, or a custom trailer clip can be provided. The

body can consist of one or more body clips. Users must specify one and only one body clip, but the HAR Service can

combine messages for broadcast as a single combined message on a HAR, up to a maximum run length.

5.2.1.2.14 HARMessageAudioClip (Class)

This class is a thin wrapper for recorded voice that is to be played on a HAR. This class is passed around the system,

wherever possible instead of passing the actual voice data contained in the initial HARMessageAudioDataClip. When the

actual voice data is needed to play to the user or to program the HAR device, this object's streamer is used to stream the actual

voice data back to an AudioPushConsumer specified by the requester.

5.2.1.2.15 HARMessageAudioDataClip (Class)

This class is a message clip that contains audio data and the format of the audio data. Because audio data can be very large,

this type of clip is reserved for use when recorded voice is first entered into the system. Recorded voice that already exists in

the system is passed throughout the system using HARMessageAudioClip to avoid sending the large audio data when

possible. A HARMessageAudioClip can stream the associated data back to an audio consumer when needed, by contacting

its AudioClipManager.

5.2.1.2.16 HARMessageClip (Class)

This class represents a section of a HAR message. A HARMessage typically contains one to three clips: a body plus an

optional header and optional trailer. A combined HARMessage which is stored on (broadcast from) a HAR can one or more

clips, an optional header, optional trailer, and one or more body clips. See HARMessage for details. A HARMessageClip can

be either plain text which would need to be converted to audio prior to broadcast, or audio (WAV) format, or it can refer to a

clip which is prestored in a specific target HAR already. Audio clips are normally passed around as lightweight

HARMessageAudioClips, which are created from HARMessageAudioDataClips typically at the point where the

HARMessageAudioClip first enters a server.

5.2.1.2.17 HARMessageClipList (Class)

The HARMessageClipList is a collection of HARMessageClip objects. It is used to specify multiple clips contained in the

CHART R8 Detailed Design Rev 2 5-12 08/01/2011

body of a HARMessage. While a HARMessage specified by a user can contain only one body clip, a HARMessage generated

by the HAR Service can contain multiple body clips, as a result of combining more than one message into a single message

for download to and broadcast by a HAR.

5.2.1.2.18 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to

tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and

allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the

HAR. This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a

SHAZAM-like message.

5.2.1.2.19 HARMessageNotifierList (Class)

This class defines a list of HARMessageNotifierStruct objects.

5.2.1.2.20 HARMessageNotifierStruct (Class)

This class (struct) defines structure used for specifying a HARMessageNotifier, containing the notifier's ID and reference.

5.2.1.2.21 HARMessagePrestoredClip (Class)

This class stores data used to identify the usage of a clip that has already been stored on a specific HAR device.

5.2.1.2.22 HARMessageTextClip (Class)

This class represents a HAR message content object which is in plain text format. This message can be checked for banned

words and will be converted into a voice message using a speech engine, for downloading to a HAR device or to preview the

voice audio to a user.

5.2.1.2.23 HARPlanItemData (Class)

This class is used to associate a message with a HAR for use in Plans.

5.2.1.2.24 HARRPIData (Class)

This class represents an item in a traffic event response plan that is capable of issuing a command to put a message on a HAR

CHART R8 Detailed Design Rev 2 5-13 08/01/2011

when executed. When the item is executed, it adds an ArbQueueEntry to the specified HAR, which stores the entry in its

MessageQueue. When the item's execution is revoked, or the item is removed from the response plan (manually or implicitly

through closing the traffic event) the item asks the HAR to remove the entry. The HARRPIData object also allows

specification of a subset (0 to all) of the HARNotifier devices (SHAZAM or DMS devices acting as SHAZAMs) to be

activated if and while the message is being broadcast on the HAR.

5.2.1.2.25 HARSlotData (Class)

This struct defines the data used to identify the contents and usage of a slot in the HAR controller.

5.2.1.2.26 HARSlotDataList (Class)

The HARSlotDataList class is simply a collection of HARSlotData objects.

5.2.1.2.27 HARSlotNumber (Class)

The HARSlotNumber is an integer used to specify slot numbers on a HAR controller.

5.2.1.2.28 HARSlotUsageIndicator (Class)

This enum defines indicators used to show the usage of a given slot in the HAR controller.

5.2.1.2.29 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device. The data contained in this class is that

status information which can be transmitted from the HAR to the client as necessary. This struct is also used to within the

HAR Service to transmit data to/from the HARControlDB database interface class. (The HAR implementation also contains

other private status data elements which are not elements of this class.)

5.2.1.2.30 HARStatusEventInfo (Class)

This class contains data (HARStatus) that is pushed when the HARStatusChanged CORBA event is pushed on the

HARControl event channel.

5.2.1.2.31 HISDR1500HAR (Class)

This interface is implemented by objects that provide for the control of an HIS model DR1500 HAR.

CHART R8 Detailed Design Rev 2 5-14 08/01/2011

5.2.1.2.32 ISSAP55HAR (Class)

This interface is implemented by objects that provide for the control of an ISS model AP55 HAR.

5.2.1.2.33 Message (Class)

This class represents a message that will be used while activating devices. This class provides a means to check if the

message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific

message data.

5.2.1.2.34 ResponsePlanItemTarget (Class)

This interface represents an object that can be a target of a response plan item.

5.2.1.2.35 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition

of the resource while the resource is in use.

5.2.1.2.36 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must

be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others

if there are any resources under its management that are controlled by a given operations center. The shared resource manager

is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource

doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push

an event on the ResourceManagement event channel to notify others of this condition.

5.2.1.2.37 StoredMessage (Class)

This class holds a message object that is stored in a message in a library. It contains attributes such as category and message

description which are used to allow the user to organize messages.

5.2.1.2.38 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be

generated by the IdentifierGenerator to ensure uniqueness.

CHART R8 Detailed Design Rev 2 5-15 08/01/2011

5.2.1.3 DeviceManagement (Class Diagram)

This class diagram shows device interfaces that are common among devices.

*

*

*

1

ArbQueueEntryDesc

«typedef»

CommFailure

«exception»

1

DeviceAlertAndNotification

«struct»

New for R8

1

1

ArbQueueEntryDescList

«typedef»

CommunicationMode

«enumeration»

DisapprovedMessageContent

«exception»

ArbQueueSubEntryDescList

«typedef»1

ArbQueueEntryType

«enumeration»

*

ArbQueueEntryIndicator

«datatype»

1

Message

«interface»

EntryOwner

«interface»

*

ArbQueueEntryList

«typedef»

PortManagerCommsData

«typedef»

1

1

ArbitrationQueue

«interface»

ArbQueueSubEntryDesc

«datatype» *

IPPortLocationData

«struct»

1

ArbQueuePriorityLevel

«enumeration»

ArbQueueEntryKeyList

«typedef»

1

EntryValidStatus

1

CommEnabled

«interface»

1

ArbQueueEntryKey

«typedef»

ArbQueueEntry

«valuetype»

PortLocationData

«typedef»OperationalStatus

«enumeration»

UniquelyIdentifiable

«interface»

ONLINE
OFFLINE
MAINT_MODE

takeOffline(AccessToken, CommandStatus):void
putOnline(AccessToken, CommandStatus):void
putInMaintenanceMode(AccessToken, CommandStatus):void
getCommMode() :CommunicationMode

deviceID:Identifier
isActive:boolean

OK
COMM_FAILURE
HARDWARE_FAILURE

WordList disapprovedWords
string reason

string m_portManagerName;
string m_devicePhoneNumber;

byte[] m_ownerID
byte[] m_pwnerSubID
ArbQueueEntryType m_type

key:ArbQueueEntryKey
priority:double
msgDesc:string
isActive:boolean
deviceStatus:ArbQueuSubEntryDesc[]
entryValid:boolean

string reason;
string debug;
long errorCode;

SAFETY
ACTION
SPECIAL
WEATHER
SHAZAM
CONGESTION
TOLL_RATE
TRAVEL_TIME
PLANNED_ROADWAY_CLOSURE
INCIDENT
URGENT

PortManagerCommsList m_prtManagerList
PortType m_portType;
int m_portWaitTimeSecs;

ArbQueueEntryKey m_key
EntryOwner m_entryOwner

HAR
DMS
HAR_NOTIFIER

addEntry(token: AccessToken, level: ArbQueuePriorityLevel,
 entry: ArbQueueEntry):void
removeEntriesForOwner(token: AccessToken, ownerID: Identifier):void
removeEntries(token: AccessToken, keys: ArbQueueEntryKeyList):void
changePriority(token: AccessToken, ownerName: string,
 key: ArbQueueEntryKey, priority: double):void
getEntries():ArbQueueEntryList
getEntry(key: ArbQueueEntryKey):ArbQueueEntry
getEntryDescriptions():ArbQueueEntryDescList
forceEvaluation(token: AccessToken):void

m_ipAddress:string
m_tcpPortNumber:int

VALID
INVALID
UNDETERMINED

getDeviceIDs():Identifier[]
getOwner():EntryOwner
getOwnerID():Identifier
getKey():ArbQueueEntryKey
getOpCenterID():Identifier
getOpCenterName():string
getHostName():string
getUseAllDevices():boolean
getUserName():string
getMessage():Message
getPriority():double
setDeviceIDs(Identifier[]):void
setHostName(string hostName):void
setIndicator(ArbQueueEntryIndicator data) : void
setOpCenterID(Identifier opCenterID):void
setOpCenterName(string opCenterName):void
setPriority(double newpriority):void
setUseAllDevices(boolean):void
setUserName(string userName):void
validate():EntryValidStatus

m_entryOwner: EntryOwner
m_indicator: ArbQueueEntryIndicator
m_useAllDevices: boolean
m_deviceIDs: Identifier[]
m_message: Message
m_priority: double
m_hostName: string
m_opCenterID: Identifier
m_opCenterName: string
m_userName: string

OpCenterInfo m_amgToNotify
OpCenterInfo m_commFailAlertOpcenter
NotificationGroupInfo m_commFailureNotifyGroupInfo
NotificationGroupInfo m_hwFailureNotifyGroupInfo

validateMessageContent():void;
matches(Message): boolean

getID()
getName()

validate(ArbQueueEntryKey entryKey):boolean

Figure 5-43. DeviceManagement (Class Diagram)

CHART R8 Detailed Design Rev 2 5-16 08/01/2011

5.2.1.3.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which

message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they

are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current

contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is

evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the

device is put online.

5.2.1.3.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a single traffic event. (It is possible, in

the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In

such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the

ArbQueueEntryIndicator for the entry.)

5.2.1.3.3 ArbQueueEntryDesc (Class)

This structure is used to provide a description of an entry on the arbitration queue.

5.2.1.3.4 ArbQueueEntryDescList (Class)

Collection of ArbQueueEntryDesc objects.

5.2.1.3.5 ArbQueueEntryIndicator (Class)

The ArbQueueEntryIndicator contains data necessary to specify a unique ArbQueueEntry object; in addition, it contains a

reference to the TrafficEvent which is responsible for the entry.

5.2.1.3.6 ArbQueueEntryKey (Class)

This class contains the Traffic Event ID and RPI ID and is used to identify a specific ArbQueueEntry. In some cases (e.g., for

HARNotifierArbQueueEntry objects), the RPI ID is the string representing a null Identifier.

5.2.1.3.7 ArbQueueEntryKeyList (Class)

A collection of ArbQueueEntryKey objects.

CHART R8 Detailed Design Rev 2 5-17 08/01/2011

5.2.1.3.8 ArbQueueEntryList (Class)

A collection of ArbQueueEntry objects.

5.2.1.3.9 ArbQueueEntryType (Class)

Enumeration of all possible types of entries that could be on an arbitration queue.

5.2.1.3.10 ArbQueuePriorityLevel (Class)

Enumeration of all possible priority levels of the arbitration queue. All entries in the queue fit into one of these levels. The

levels are named after the types of messages that are typically mapped into them. However, any message can exist in any

level and new types of messages could be mapped into these levels. Thus, the levels could have been named, LOWEST

through HIGHEST. The names chosen have been used to provide some indication of the likely usage of the levels.

TOLL_RATE and TRAVEL_TIME levels have been added for R3B3.

5.2.1.3.11 ArbQueueSubEntryDesc (Class)

This structure hold ArbQueueEntry "device-level detail for one "sub-device (such as a constituent HAR within a SyncHAR).

It holds the ID of the device and an indication as to whether the entry is active for this particular subdevice. An

ArbQueueEntry for a conglomerate device (such as a SyncHAR) will contain a list of these structures, one for each

constituent HAR the entry is destined for.

5.2.1.3.12 ArbQueueSubEntryDescList (Class)

This is an array of ArbQueueSubEntryDesc. It holds a list of "sub-devices" (such as constituent HARs of a SyncHAR) for

which an arb queue entry is destined, and for which of those devices the entry is active.

5.2.1.3.13 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode

through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer

available for use through the system and automated polling (if any) is halted. When put online, a device is again available for

use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a

device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of

device are allowed to help in troubleshooting.

CHART R8 Detailed Design Rev 2 5-18 08/01/2011

5.2.1.3.14 CommFailure (Class)

This exception is to be thrown when an error is detected connecting to or communicating with a device.

5.2.1.3.15 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE, OFFLINE, and MAINT_MODE.

ONLINE is used to indicate the device is available to the operational system. OFFLINE is used to indicate the device is not

available to the online system and communications to the device have been disabled. MAINT_MODE is used to indicate that

the device is available only for maintenance / repair activities and testing.

5.2.1.3.16 DeviceAlertAndNotification (Class)

This structure stores device alert and notification data.

5.2.1.3.17 DisapprovedMessageContent (Class)

This exception is thrown when a text message to be put on a device contains words that are not approved. This exception is

also thrown if an attempt is made to put the device in an invalid display state, such as putting the Beacons ON for a blank

DMS.

5.2.1.3.18 EntryOwner (Class)

Interface which must be implemented by any class which is responsible for putting an ArbQueueEntry on a device's

arbitration queue. This validate method of this interface can be called by the device to determine continued validity of the

entry (either during recovery or as a final check of the validity of an entry before putting its message on the device).

5.2.1.3.19 EntryValidStatus (Class)

This enumeration is used to track whether an arb queue entry has been validated by its EntryOwner (interface). The possible

values are VALID, INVALID, and UNDETERMINED.

5.2.1.3.20 IPPortLocationData (Class)

this structure defines the connection information of a tcp/ip port.

CHART R8 Detailed Design Rev 2 5-19 08/01/2011

5.2.1.3.21 Message (Class)

This class represents a message that will be used while activating devices. This class provides a means to check if the

message contains any banned words given a Dictionary object. Derived classes extend this class to provide device specific

message data.

5.2.1.3.22 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have: OK (normal mode),

COMM_FAILURE (no communications to the device), or HARDWARE_FAILURE (device is reachable but is reporting a

hardware failure).

5.2.1.3.23 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the

device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

5.2.1.3.24 PortManagerCommsData (Class)

This class contains values that identify a port manager and the phone number to dial to access a device from the given port

manager. This class exists to allow for the phone number used to access a device to differ based on the port manager to take

into account the physical location of the port manager within the telephone network. For example, when dialing a device

from one location the call may be long distance but when dialing from another location the call may be local.

5.2.1.3.25 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be

generated by the IdentifierGenerator to ensure uniqueness.

CHART R8 Detailed Design Rev 2 5-20 08/01/2011

5.2.1.4 HARControlDR1500 (Class Diagram)

This class diagram contains the interfaces used relating to the control of DR1500 Highway Advisory Radio (HAR).

1

1

1

1

1

R8: Added IP configuration,

alert/notification, and polling

R8: Added last setup time

1 1

1

1

1

1

1

1

1

1

1

HAR

«interface»

HISDR1500HAR

«interface»

HISDR1500HARStatus

HISDR1500SubMode

«enumeration»

HISDR1500HARConfiguration

HISDR1500HardwareFailureConfiguration

R8: New

HISDR1500Mode

«enumeration»

HARStatus

«typedef»

HISDR1500SynchMode

1

HARConfiguration

«typedef»

R8: Added poll

1

1

1
HARMessage m_currentMessage

HARSlotDataList m_slotData

boolean m_transmitterOn

CommMode m_commMode

OperationalStatus m_OpStatus

OpCenterInfo m_controllingOpCenter

long m_statusChangeTime

long m_lastContactTime

m_lastSetupTime:long

m_baseStatus:HARStatus

m_powerOn:boolean

m_dcVoltage:short

m_broadcastMonitor:short

m_mode:HISDR1500Mode

m_subMode:HISDR1500SubMode

m_synchMode:HISDR1500SynchMode

m_setTxPower:short

m_forwardPower:short

m_reflectedPower:short

m_vswr:short

m_modulation:short

m_dr1500Version:string

m_dccVersion:string

m_dr1500TimeStamp:long

m_lastOutOfSyncTime:long

m_alertAndNotification:DeviceAlertAndNotification

string m_name

ObjectLocation m_deviceLocation

string m_devicePhoneNumber

string m_deviceMonitorPhoneNumber

string m_deviceAccessCode

long m_maxStoredVoiceSeconds

HARMessageNotifierList m_msgNotifiers

Identifier m_owningOrgID

string m_networkConnectionSite

PortLocationData m_portLocationData

PortLocationData m_monitorPortLocationData

IPPortLocationData m_ipPortLocationData

pollingSeconds:int

pollingEnabled:boolean

SYNCH_ON

SYNCH_OFF

m_baseConfig:HARConfiguration

m_hardwareFailureConfiguration:HISDR1500HardwareFailureConfiguration

NONSYNCHRONIZEDMSG

SYNCHRONIZEDMSG

NONSYNCHRONIZEDPLAYLIST

SYNCHRONIZEDPLAYLIST

m_minDCVoltageMilliVolts: int

m_minBroadcastMonitorPct:short

m_maxBroadcastMonitoPctr:short

m_minModulationPct:short

m_maxModulationPct:short

m_maxVSWRatio: short

OFF

PLAYLIST

ALERT

LIVE

AUX

Figure 5-44. HARControlDR1500 (Class Diagram)

CHART R8 Detailed Design Rev 2 5-21 08/01/2011

5.2.1.4.1 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related

information over a localized radio transmitter, making the information available to the traveler. This interface contains

methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating

and monitoring the HAR in maintenance and online modes.

5.2.1.4.2 HARConfiguration (Class)

This class (struct) contains configuration data for a HAR device. It is used to transmit current configuration data from the

HAR to the client, and to transmit proposed new configuration data from the client to the HAR. It is also used internally by

the HARService to maintain its configuration in memory, and is used to transmit configuration data to/from the HAR to the

HARControlDB database interface class. Device Location member has been modified for R3B3. Now it contains a detailed

location information.

5.2.1.4.3 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device. The data contained in this class is that

status information which can be transmitted from the HAR to the client as necessary. This struct is also used to within the

HAR Service to transmit data to/from the HARControlDB database interface class. (The HAR implementation also contains

other private status data elements which are not elements of this class.)

5.2.1.4.4 HISDR1500HAR (Class)

This interface is implemented by objects that provide for the control of an HIS model DR1500 HAR.

5.2.1.4.5 HISDR1500HARConfiguration (Class)

This type contains DR1500 specific configuration fields. In R8 this type is modified to contain fields for polling.

5.2.1.4.6 HISDR1500HardwareFailureConfiguration (Class)

This structure defines DR1500 HAR and transmitter status thresholds to determine when a hardware failure alert/notification

should be sent.

CHART R8 Detailed Design Rev 2 5-22 08/01/2011

5.2.1.4.7 HISDR1500HARStatus (Class)

This type contains statis fields specific to DR1500 HARs

5.2.1.4.8 HISDR1500Mode (Class)

This enumeration contains DR1500 mode values.

5.2.1.4.9 HISDR1500SubMode (Class)

This enumeration contains DR1500 sub mode values.

5.2.1.4.10 HISDR1500SynchMode (Class)

This structure is an indicator for whether a DR1500 HAR with a synchronized playlist is in fact operating in synchronized

mode.

CHART R8 Detailed Design Rev 2 5-23 08/01/2011

5.2.1.5 HARNotification (Class Diagram)

This Class Diagram shows the classes involved in manipulating HAR message notifications. The HAR notifiers can be

SHAZAMs or DMS devices that are acting as SHAZAMs. Note that R1B2 prevents a DMS SHAZAM message from

overwriting another type of DMS message.

CHART R8 Detailed Design Rev 2 5-24 08/01/2011

New in R8:

BeaconState member

Changed in R8

added SHAZAMModelChanged

SHAZAMEvent

HARMsgNotifierIDList

«typedef»

SHAZAMStatus

«typedef» SHAZAMConfiguration

«typedef»SharedResourceManager

«interface»

SHAZAMFactory

«interface»

DMSFactory

«interface»

1

*
1

*

11

1 *

1

1

1

1

1

1

1

DeviceAlertAndNotification

«struct»

1

R8: Added

changeModelType

1

1

1

BeaconState

«enumeration»

Changed in R8:

create takes union and

returns SHAZAMInfo,

get returns SHAZAMInfo[]

New for R8

HARMessageNotifier

«interface»

SHAZAM

«interface»

CommEnabled

«interface»

GeoLocatable

«interface»

SharedResource

«interface»

UniquelyIdentifiable

«interface»

SHAZAMStatusChangeEventInfo

«typedef»

SHAZAMConfigurationEventInfo

«typedef»

SHAZAMEventType

«enumeration»

Identifier

VIKINGRC2ASHAZAM

«interface»

HWGER02ASHAZAM

«interface»

VIKINGRC2AConfiguration

«typedef»

HWGER02AConfiguration

«typedef»

SHAZAMInfo

«typedef»

SHAZAMModelID

«enumeration»

SHAZAMDeviceConfig

«union»

1

Changed in R8

from SHAZAMConfig to

SHAZAMDeviceConfig

getControllingOpCenter():OpCenterInfo

getOwnerOrgID():Identifier

takeOffline(AccessToken, CommandStatus):void

putOnline(AccessToken, CommandStatus):void

putInMaintenanceMode(AccessToken, CommandStatus):void

getCommMode() :CommunicationMode

ACTIVATED

DEACTIVATED

UNKNOWN

createSHAZAM(AccessToken,

 SHAZAMDeviceConfig) : SHAZAMInfo

getSHAZAMList():SHAZAMInfo[]

boolean m_activated

CommunicationMode m_commMode

OperationalStatus m_opStatus

OpcenterInfo m_controllingOpCenter

long m_lastContactTime

long m_lastStatusChangeTime

BeaconState m_actualBeaconState

SHAZAMAdded

SHAZAMRemoved

SHAZAMStatusChanged

SHAZAMConfigurationChanged

SHAZAMModelChanged

discriminator():SHAZAMEventType

configEventInfo():SHAZAMConfigurationEventInfo

statusEventInfo():SHAZAMStatusEventInfo

shazamID():byte[]

getLocationDesc():string

getLocationProfileles()

LocationProfile[] ()

Identifier id

string name

SHAZAMModelID modelID

SHAZAM theSHAZAM

SHAZAM theSHAZAM

Identifier id;

SHAZAMDeviceConfig config

setBeaconsOn(AccessToken, CommandStatus):void

setBeaconsOff(AccessToken, CommandStatus):void

refresh(AccessToken, CommandStatus):void

getStatus() : SHAZAMStatus

remove(AccessToken):void

setLocation(token:AccessToken, location:ObjectLocation):void

changeModelType(AccessToken, SHAZAMModelID,

 CommandStatus):void

getConfiguration(AccessToken) : HWGER02AConfiguration

setConfiguration(AccessToken,HWMER02AConfiguration,CommandStatus):void

SHAZAM_VIKING_RC2A

SHAZAM_HWG_ER02A

getID()

getName()

VIKINGRC2AConfiguration vikingRC2AConfig

HWGER02AConfiguration hwgER02aConfig

activateHARNotice(AccessToken, ArbQueueEntryIndicator,

 TrafficEventList, CommandStatus):void

deactivateHARNotice(AccessToken, boolean onlineFlag,

 CommandStatus):void

modifyHARNotice(AccessToken, TrafficEventList): void

isHARNoticeActive() : boolean

setAssociatedHAR(AccessToken, HAR, Identifier harID):void

getAssociatedHAR() : HAR

getDirection():DirectionValues

setDirection(Direction):void

SHAZAMConfiguration m_shazamConfig

int m_activeRelay

Identifier id

SHAZAMStatus status

SHAZAMModelID m_modelID

string m_name

ObjectLocation m_location

Identifier owningOrgID

string m_messageText

Direction m_direction

long m_refreshIntervalMins

boolean m_refreshEnabled

NetworkConnectionSite m_networkConnectionSite

Identifier m_associatedHARID

PortLocationDataList m_portLocationData

IPPortLocationDataList m_ipPortLocationData

DeviceAlertAndNotification m_deviceAlertandNotification

getConfiguration(AccessToken) : VIKINGRC2AConfiguration

setConfiguration(AccessToken, VIKINGRC2AConfiguration,

 CommandStatus) : void

SHAZAMConfiguration m_shazamConfig

string m_devicePhoneNumber

string m_deviceAccessCode

Identifier(byte[] chartID)

equals(Object obj)

hashCode()

byte[] getID()

m_id

Figure 5-45. HARNotification (Class Diagram)

CHART R8 Detailed Design Rev 2 5-25 08/01/2011

5.2.1.5.1 BeaconState (Class)

The valid values for the current beacon state, as queried from the device.

5.2.1.5.2 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode

through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer

available for use through the system and automated polling (if any) is halted. When put online, a device is again available for

use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a

device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of

device are allowed to help in troubleshooting.

5.2.1.5.3 DeviceAlertAndNotification (Class)

This structure stores device alert and notification data.

5.2.1.5.4 DMSFactory (Class)

The DMSFactory class specifies the interface to be used to create DMS objects within the Chart II system. It also provides a

method to get a list of DMS devices currently in the system.

5.2.1.5.5 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

5.2.1.5.6 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to

tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and

allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the

HAR. This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a

SHAZAM-like message.

CHART R8 Detailed Design Rev 2 5-26 08/01/2011

5.2.1.5.7 HARMsgNotifierIDList (Class)

This typedef is a sequence of HARMessageNotifier identifiers.

5.2.1.5.8 HWGER02AConfiguration (Class)

This class contains SHAZAMConfiguration plus data that is specific to a HWG ER02a SHAZAM.

5.2.1.5.9 HWGER02ASHAZAM (Class)

This interface is used to provide access to configuration data specific to the HWG ER02a SHAZAM.

5.2.1.5.10 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add identifiable objects to hash tables and

perform subsequent lookup operations.

5.2.1.5.11 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition

of the resource while the resource is in use.

5.2.1.5.12 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must

be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others

if there are any resources under its management that are controlled by a given operations center. The shared resource manager

is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource

doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push

an event on the ResourceManagement event channel to notify others of this condition.

5.2.1.5.13 SHAZAM (Class)

This interface class is used to identify the common SHAZAM-specific methods which can be used to interface with a

SHAZAM field device. It specifies methods for activating and deactivating the SHAZAM in maintenance mode, refreshing

the SHAZAM (commanding the device to its last known status) and removing the SHAZAM. This interface is implemented

by a SHAZAMImpl class, which uses a helper ProtocolHdlr class to perform the model specific protocol for device command

CHART R8 Detailed Design Rev 2 5-27 08/01/2011

and control.

5.2.1.5.14 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device. It is used to communicate configuration

information to/from the database, and to/from the GUI clients. The GUI sends a SHAZAMConfiguration when creating a

SHAZAM or modifying the configuration of an existing SHAZAM.Device Location member has been modified for R3B3.

Now it contains a detailed location information.

5.2.1.5.15 SHAZAMConfigurationEventInfo (Class)

This class contains data (a SHAZAMDeviceConfig object) that is pushed on the SHAZAMControl CORBA event channel

with a SHAZAMConfigurationChanged or SHAZAMAdded event type.

5.2.1.5.16 SHAZAMDeviceConfig (Class)

This structure stores configuration information for a SHAZAM that is specific to the SHAZAM model.

5.2.1.5.17 SHAZAMEvent (Class)

This class is a CORBA union that is used when pushing SHAZAM related events. The type of data included in it is

dependent upon the type of event being pushed as follows:

SHAZAMAdded: SHAZAMConfigurationEventInfo SHAZAMConfigurationChanged: SHAZAMConfigurationEventInfo

SHAZAMStatusChanged: SHAZAMStatusChangeEventInfo SHAZAMRemoved: Identifier (SHAZAM ID)

SHAZAMModelChanged: SHAZAMConfigurationEventInfo (new for R8)

5.2.1.5.18 SHAZAMEventType (Class)

This enum defines the types of CORBA events that are pushed on a SHAZAM control event channel.

5.2.1.5.19 SHAZAMFactory (Class)

The SHAZAMFactory class specifies the interface to be used to create SHAZAM objects within the Chart II system. It also

provides a method to get a list of SHAZAM devices currently in the system.

CHART R8 Detailed Design Rev 2 5-28 08/01/2011

5.2.1.5.20 SHAZAMInfo (Class)

This struct contains information about a single SHAZAM.

5.2.1.5.21 SHAZAMModelID (Class)

This enum contains the supported SHAZAM hardware models.

5.2.1.5.22 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device. This class is used to store status within the SHAZAM object, and

is also used to communicate configuration information to/from the database, and to the GUI clients (one-way).

5.2.1.5.23 SHAZAMStatusChangeEventInfo (Class)

This class contains data (a SHAZAMStatus object) that is pushed on a SHAZAMControl event channel with a

SHAZAMStatusChanged event.

5.2.1.5.24 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be

generated by the IdentifierGenerator to ensure uniqueness.

5.2.1.5.25 VIKINGRC2AConfiguration (Class)

This class contains SHAZAMConfiguration plus data that is specific to a Viking RC2A SHAZAM.

5.2.1.5.26 VIKINGRC2ASHAZAM (Class)

This interface is used to provide access to configuration data specific to the Viking RC2A SHAZAM.

5.2.2 Sequence Diagrams

Sequence diagrams do not apply to the System Interfaces.

CHART R8 Detailed Design Rev 2 5-29 08/01/2011

5.3 Audio Common

5.3.1 Class Diagrams

5.3.1.1 AudioCommonClasses (Class Diagram)

This diagram shows classes that are commonly used for audio processing.

AudioClipDefaultFactory

AudioClipImpl

AudioLengthEstimator

AudioPushThread AudioPushThreadManager

AudioUtility

createAudioClip(byte[], AudioClipManager):AudioClip

getClipID() : byte[]
getManager(); AudioClipManager()
registerInterest(AudioClipOwner): void
deregisterInterest(AudioClipOwner): void
matches(AudioClip): boolean
stream(int, AudioPushConsumer): void

setClipInfo(AudioPushConsumer,
 InputStream,
 AudioDataFormat,
 long chunkSize): void
shutdown() : void
-clearClipInfo()

AudioPushConsumer m_consumer
AudioDataFormat m_format
InputStream m_stream
boolean m_inUse
long m_chunkSize
boolean m_shutdown

setMilliseconds(int, int, int, int): void
getMillisecondsCons(): int
getMillisecondsVowel(): int
getMillisecondsPunc() : int
getMillisecondsNum(): int
getMillisecondsSpaces(): int
estimate(string): void

AudioPushThreadManager(int numPushThreads)
pushAudio(AudioPushConsumer consumer,
 InputStream stream,
 AudioDataFormat format,
 long chunkSize)
releaseAudioPushThread()
-getAudioPushThread()

m_freeThreads
m_inUseThreads

matchesAudioDataClips(AudioDataClip, AudioDataClip): bolean
createAudioInputStream(AudioDataClip): AudioInputStream
createAudioFormat(AudioDataFormat): AudioFormat
getEncoding(AudioEncoding): AudioFormat.Encoding
createDefaultAudioDataFormat(): AudioDtaFrmat
createAudioDataClip(AudioInputStream):AudioDataClip
createAudioDataFormat(AudioFormat): AudioDataFormat
getAudioData(AudioInpputStream); byte[]()
getRunLengthSecs(AudioInputStream): floatgetRunLengthSecs(AudioFormat, int): float
getRunLengthSecs(AudioDataClip): float
converAdioClip(AudioDataClip) : AudioInputStream
convertSampleRate(AudioInputStream): AudioInputStream

Figure 5-46. AudioCommonClasses (Class Diagram)

5.3.1.1.1 AudioClipDefaultFactory (Class)

The AudioClipDefaultFactory is the implementation of the AudioClipValueFactory used by the ORB to create AudioClipImpl

objects representing the AudioClip value type.

CHART R8 Detailed Design Rev 2 5-30 08/01/2011

5.3.1.1.2 AudioClipImpl (Class)

This class contains the implementation of the AudioClip value type abstract class.

5.3.1.1.3 AudioLengthEstimator (Class)

This class provides the ability to estimate the number of milliseconds it will take to play a text message based on a input

parameters of N milliseconds for each consanant, vowel, punctuation, and number.

5.3.1.1.4 AudioPushThread (Class)

This class is a thread which is used to push audio clip information to an AudioPushConsumer.

5.3.1.1.5 AudioPushThreadManager (Class)

This class maintains a pool of reusable AudioPushThread objects, which can be used to push audio clip information back to

the client. It provides the functionality to manage access to the AudioPushThreads.

5.3.1.1.6 AudioUtility (Class)

This class provides helper methods to use Audio related objects. It provides many static methods that aid in the conversion

between java sound objects and CHART2 CORBA objects.

CHART R8 Detailed Design Rev 2 5-31 08/01/2011

5.3.2 Sequence Diagrams

5.3.2.1 AudioCommonClasses:ConvertAudioClip (Sequence Diagram)

This diagram shows how audio data is converted from U-Law 8 KHz 8 bit mono to PCM 11Kh 8 bit mono format. When a

request is made to convert audio Convert Audio function get source Stream in U-law format. Then we are constructing the

desired format of the audio data (Encoding.PCM_UNSIGNED, Sample Rate 8 KHz, mono. Because of Sun implementation

of Java Sound API does not support conversion and re-sampling we use Tritonus (open source java sound implementation).

After desire format constructed we call UlawFormatConversionProvider to convert audio stream from u-law to pcm. Second

step is sample rate conversion from 8Kh to 11. When target Audio Format constructed we call Audio System to re-sample

source Stream with new format.

create a new AudioFormat
PCM_UNSIGNED

org.tritonus.sampled.convert.UlawFormatConversionProvider

Here we convert from
 U-Law to PCM.

javax.sound.sampled.AudioSystem

where re-sample take a plase.

Construct the desire format of the
audio data (as the result of the conversion should be).
TargetSampleRate = 11025
SampleSize 8
mono

createTargerFormat

createNewFormat

convertSampleRate(sampleRate, targerStream)

getAudioInputStream(targetPcmformat, sourceAudioInputStream))

HARProptocolHdlr

AudioUtility

convertAudioClip(AudioDataClip)

getAudioInputStream(newFormat, trargetAudioInputStream)

UnsupportedAudioFileException

return[AudioInputStream]
UnsupportedAudioFileException[]

createAudioInputStream
Convert AudioDataClip
to AudioInputStream

Figure 5-47 AudioCommonClasses:ConvertAudioClip (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-32 08/01/2011

5.4 Device Utility

5.4.1 Class Diagrams

5.4.1.1 DeviceUtility (Class Diagram)

This class diagram shows utility classes that are useful for tasks in performing device control.

CHART R8 Detailed Design Rev 2 5-33 08/01/2011

subDeviceStatusChange() is new for R2B3.

VoicePortLocator

CommFailureCode

CommFailureDB

New for R8

AlertAndNotificationHelper

ArbitrationQueueEnabled

«interface»

*

ConnectedPortInfo

PortManagerListEntry

«typedef»

MessageQueue

*

New for R7. The majority of methods
contain refactored code from the dms ntcip
protocol handler

NTCIPUtility

1

1

1

returns connected port in

*

1

1

1

1

1

1

1

PortLocator

CommFailureData

ModemPortLocator

PortLocationData

«typedef»

ArbQueueEntry

«valuetype»

1

1

*

ArbQueueEntryDesc

«typedef»

ArbQueueEntryDesc

«typedef»

ArbQueueSubEntryDesc

«datatype»

ArbQueueSubEntryDesc is new
for R2B3.

*1

1

1

Subtypes include
DMSArbitrationQueue and
HARArbitrationQueue.

ArbQueueEntryKey

«typedef»

ArbQueueEntryIndicator

«datatype»

ArbitrationQueue
1

m_deviceIDs, m_useAllDevices, and
corresponding get/set methods are
new for R2B3.

1

key:ArbQueueEntryKey
priority:double
msgDesc:string
isActive:boolean
deviceStatus:ArbQueuSubEntryDesc[]
entryValid:boolean

+deactivateAll(AccessToken,message:String):void
+getActiveKeys():ArbQueueEntryKey[]
+getRPIExecutionStatus():RPIExecutionStatus[]
#addEntryInit(deviceImpl:Object,AccessToken,ArbQueueEntry):void
#getDeletedActiveEntryKeys():Set
#getQueuedCommands():QueueableCommand#getRequestID():int
#queueInit(action:String):void
#requestFailed(deletedKeys:Set,newEntries:ArbQueueEntry[],
 oldMessageGone:boolean):void
#requestSuccessful(deletedKeys:Set,newEntries:ArbQueueEntry[]):void
#setMessage(AccessToken,Message,ArbQueueEntry[],reqID:int):void
#setMessageImpl(AccessToken,Message,ArbQueueEntry[],
 commandThatExecutesMe:QueueableCommand,reqID:int):void
#subDeviceStatusChange(text:string,
 deviceStatus:ArbQueueSubEntryDesc):void
#validateEntries(purgeInvalid:boolean):boolean
#validateEntry(ArbQueueEntry):void
#validateEntryOwner(ArbQueueEntry):void

deviceID:Identifier
isActive:boolean

byte[] m_ownerID
byte[] m_pwnerSubID
ArbQueueEntryType m_type

MessageQueue(byte[] deviceID, String deviceName,
 boolean depersisting, ORB orb)
+addEntry(levelArbQueuePriorityLevel,entry:ArbQueueEntry):void
+assignPriority(key:ArbQueueEntryKey,priority:double):void
+changePriority(key:ArbQueueEntryKey,priority:double):void
-checkValidPriority(priority:double):boolean
-dePersist():boolean
+modifyEntry(AccessToken, modifyEntry:ArbQueueEntry):void
+getEntries():ArbQueueEntryList
-getPriorityFallsInLevel(priority:double):ArbQueuePriorityLevel
#persist():void
-reassignPriorityInLevel(level:ArbQueuePriorityLevel):void
-setPriority(key:ArbQueueEntryKey,priority:double):void
+removeEntry(ArbQueueEntryKey removeEntryKey):void
+validateEntries(purgeUnresolved:boolean): boolean
-depersist(): void
-persist(): void

m_messageQueue:Vector
m_deviceID:Identifier
m_deviceName:String

key:ArbQueueEntryKey
priority:double
msgDesc:string
isActive:boolean
deviceStatus:ArbQueuSubEntryDesc[]
entryValid:boolean

+get(OID oid, DataPortUtility port,boolean convertToUTF8):string
+set(OID oid, DataPortUtility port, boolean convertToUTF8)
-getOIDToOEREncodedByteCmd(OID oid):byte[]
-sendPMPP(byte[] buffer, int requestID, DataPortUtility port, boolean convertToUTF8)
-sendSNMPP(byte[] buffer, int requestID, DataPortUtility port, boolean convertToUTF8)
-createUnnumberedPollMessage(int number)

m_address:int
m_community:string
m_initialTimeout:int
m_interCharTimeout:int
m_responseTimeout:int
m_hdlcFramingRequired:bool
m_logFile:LogFIle

ArbQueueEntryKey m_key
EntryOwner m_entryOwner

getDeviceIDs():Identifier[]
getOwner():EntryOwner
getOwnerID():Identifier
getKey():ArbQueueEntryKey
getOpCenterID():Identifier
getOpCenterName():string
getHostName():string
getUseAllDevices():boolean
getUserName():string
getMessage():Message
getPriority():double
setDeviceIDs(Identifier[]):void
setHostName(string hostName):void
setIndicator(ArbQueueEntryIndicator data) : void
setOpCenterID(Identifier opCenterID):void
setOpCenterName(string opCenterName):void
setPriority(double newpriority):void
setUseAllDevices(boolean):void
setUserName(string userName):void
validate():EntryValidStatus

m_entryOwner: EntryOwner
m_indicator: ArbQueueEntryIndicator
m_useAllDevices: boolean
m_deviceIDs: Identifier[]
m_message: Message
m_priority: double
m_hostName: string
m_opCenterID: Identifier
m_opCenterName: string
m_userName: string

notifyAndAlert(DeviceAlertAndNotification,
 OperationalStatus):void

PortLocator(CommFailureDB):PortLocator
+abstract getConnectedPort(String opDescription,
 CommandStatus):ConnectedPortInfo
+abstract releaseConnectedPort(ConnectedPortInfo):void

static int CONN_RSLT_OK;
static int CONN_RSLT_FAIL_RETRY;
static int CONN_RSLT_FAIL_NO_RETRY;

PortManagerCommsList m_prtManagerList
PortType m_portType;
int m_portWaitTimeSecs;

+VoicePortLocator(portLocationData, orb, traderGroup,commFailureDB)
#connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int
-rspCodeToString(rspCode):String

+ModemPortLocator(portLocationData,orb,traderGroup,commFailureDB)
#connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int
-rspCodeToString(rspCode):String

-m_commPortconfig:CommPortconfig

+abstract toString():String
+abstract setDispatcher(ProtocolHdlrDispatcher dispatcher)
+abstract getProtocolHdlrDispatcher():ProtocolHdlrDispatcher

m_portWrapper:DataPortUtility
m_dispatcher:Dispatcher

String m_portMgrName;
PortManager m_portMgrRef;

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

String portManagerName
PortType portType
String portName
int failureCode
int modemResponseCode
String logText

SOFTWARE_ERROR
ACQUIRE_PORT_MGR_NOT_AVAILABLE
ACQUIRE_PORT_TYPE_NOT_SERVED
ACQUIRE_NO_PORTS_AVAILABLE
CONNECT_GENERAL_FAILURE
CONNECT_MODEM_NOT_RESPONDING
CONNECT_PORT_OPEN_FAILURE
CONNECT_MODEM_CONNECT_FAILURE

Figure 5-48. DeviceUtility (Class Diagram)

5.4.1.1.1 AlertAndNotificationHelper (Class)

This helper class provides method to sends an alert and notification messages to a notification group.

CHART R8 Detailed Design Rev 2 5-34 08/01/2011

5.4.1.1.2 ArbitrationQueue (Class)

This is an abstract implementation of a generic device arbitration queue. It basically implements of the ArbitrationQueue

CORBA interface (shown as ArbitrationQueueEnabled in this design). However, the official implmenters of

ArbitrationQueue (ArbitrationQueueEnabled) interface are the devices themselves, CHART2DMSImpl and HARImpl. All

ArbitrationQueue types of operations are delegated to an instance of this ArbitrationQueue class (one per physical device, i.e.,

one per instance of a device Impl class). There are device-specific concrete extensions of ArbitrationQueue for DMS and

HAR, namely, DMSArbitrationQueue and HARArbitrationQueue. These provide device-specific variation.

5.4.1.1.3 ArbitrationQueueEnabled (Class)

(This interface, defined in the design in SystemInterfaces/DeviceManagement, is called ArbitrationQueue in the code, but

cannot be called ArbitrationQueue in the design because there is also an ArbitrationQueue abstract class.) An

ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which message(s)

should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they are assigned a

priority level based on the type of traffic event with which they are associated, and also upon the current contents of the

queue. The priority of the queue entries can be modified after they are added to the queue. The queue is evaluated when the

device is online and queue entries are added or removed, when an entry's priority is modified, or when the device is put

online.

5.4.1.1.4 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a single traffic event. (It is possible, in

the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In

such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the

ArbQueueEntryIndicator for the entry.)

5.4.1.1.5 ArbQueueEntryDesc (Class)

This structure is used to provide a description of an entry on the arbitration queue.

5.4.1.1.6 ArbQueueEntryIndicator (Class)

The ArbQueueEntryIndicator contains data necessary to specify a unique ArbQueueEntry object; in addition, it contains a

reference to the TrafficEvent which is responsible for the entry.

CHART R8 Detailed Design Rev 2 5-35 08/01/2011

5.4.1.1.7 ArbQueueEntryKey (Class)

This class contains the Traffic Event ID and RPI ID and is used to identify a specific ArbQueueEntry. In some cases (e.g., for

HARNotifierArbQueueEntry objects), the RPI ID is the string representing a null Identifier.

5.4.1.1.8 ArbQueueSubEntryDesc (Class)

This structure hold ArbQueueEntry "device-level detail for one "sub-device (such as a constituent HAR within a SyncHAR).

It holds the ID of the device and an indication as to whether the entry is active for this particular subdevice. An

ArbQueueEntry for a conglomerate device (such as a SyncHAR) will contain a list of these structures, one for each

constituent HAR the entry is destined for.

5.4.1.1.9 CommFailureCode (Class)

This class defines static values to be used to specify the type of comm failure in a CommFailureData object.

5.4.1.1.10 CommFailureData (Class)

This class holds data to be passed to the CommFailureDB class to be logged in the Comm failure log in the database.

5.4.1.1.11 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database. This table is used to log details about

any comm failure that occurs in the system.

5.4.1.1.12 ConnectedPortInfo (Class)

This class holds data pertaining to a port that was acquired and connected via the PortLocator.

5.4.1.1.13 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and reprioritize traffic event entries in

a prioritized list.

5.4.1.1.14 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that

has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table

CHART R8 Detailed Design Rev 2 5-36 08/01/2011

relating to connection problems that may occur.

5.4.1.1.15 NTCIPUtility (Class)

This class contains common utility methods for NTCIP device communications. A large portion of this class is methods

refactored from the NTCIP DMS protocol handler implementation.

5.4.1.1.16 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the

device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

5.4.1.1.17 PortLocator (Class)

The PortLocator is a utility class that helps one to connect to the port used by the device. The actual implementation of the

operations is done by the derived classes depending on what protocol is used for communication.

5.4.1.1.18 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for PortManager objects.

5.4.1.1.19 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a VoicePort that

has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table

relating to connection problems that may occur. Since this is a telephony port which is much simpler to connect than, say, a

ModemPort, there will be considerably fewer types of errors which can occur and thus be detected and reported.

CHART R8 Detailed Design Rev 2 5-37 08/01/2011

5.4.1.2 PortLocatorClasses (Class Diagram)

This class diagram shows utility classes that can be used to get a free port.

PortLocationData

«typedef»

ConnectedPortInfo

PortManagerListEntry

«typedef»

CommFailureDB

1 1

returns connected port in

1 *

*

1

1

1

R7: The DataPortUtility is
updated to include the ability
to wrap a DataPortEnabled port (java
interface) depending on the device
configuration. All the device
calls should go to the dataportwrapper
that redirects the call to the
correct port. Also added utility receive methods.

1

DataPortUtility

TCPPortLocator

FMSPortLocator

CommFailureData

CommFailureCode

PortLocator

VoicePortLocator ModemPortLocator

R8: new

0..1

1

DataPortEnabled

«interface»

1

1

1

DataPortUtility

0..1

TCPIPPort

ProtocolHdlrDispatcher

«interface»

0..1

Port

«interface»

0..1

1

FMSConnectedPortInfo

1

1

TCPConnectedPortInfo

*

1

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

String portManagerName
PortType portType
String portName
int failureCode
int modemResponseCode
String logText

PortLocator(CommFailureDB):PortLocator
+abstract getConnectedPort(String opDescription,
 CommandStatus):ConnectedPortInfo
+abstract releaseConnectedPort(ConnectedPortInfo):void

static int CONN_RSLT_OK;
static int CONN_RSLT_FAIL_RETRY;
static int CONN_RSLT_FAIL_NO_RETRY;

SOFTWARE_ERROR
ACQUIRE_PORT_MGR_NOT_AVAILABLE
ACQUIRE_PORT_TYPE_NOT_SERVED
ACQUIRE_NO_PORTS_AVAILABLE
CONNECT_GENERAL_FAILURE
CONNECT_MODEM_NOT_RESPONDING
CONNECT_PORT_OPEN_FAILURE
CONNECT_MODEM_CONNECT_FAILURE

FMSPortLocator(portlocationdata,orb,lookup,commfailureDB):FMSPortLocator
+getConnectedPort(opDescription,commandStatus):ConnectedPortInfo
+releaseConnectedPort(connectedPortInfo):void
-getPort(portManagerName):Port
#abstract connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int

m_portManagerRefList:Vector
m_orb:org.om.CORBA.ORB
m_lookup:org.omg.CosTrading.Lookup

+VoicePortLocator(portLocationData, orb, traderGroup,commFailureDB)
#connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int
-rspCodeToString(rspCode):String

+abstract toString():String
+abstract setDispatcher(ProtocolHdlrDispatcher dispatcher)
+abstract getProtocolHdlrDispatcher():ProtocolHdlrDispatcher

m_portWrapper:DataPortUtility
m_dispatcher:Dispatcher

DataPortWrapper(connectedPortInfo):DataportWrapper
send(dataBytes:byte[])throws DataPortIOException()
receive(initial:int,interChar:int,maxRead:int):byte[] throws DataPortIOException
+receiveFromTCPPort(stream:InputStream, initial:int, interChar:int,maxRead:int):byte[]
+receiveFromDirectPort(stream:InputStream, initial:int, interChar:int,maxRead:int):byte[]

m_tcpPort:TCPIPPort
m_fmsPort:Port
m_dataPortEnabledPort:DataPortEnabled

+toString():String

m_portName:String
m_portMgr:PortManager
m_portMgrName:String

PortManagerCommsList m_prtManagerList
PortType m_portType;
int m_portWaitTimeSecs;

String m_portMgrName;
PortManager m_portMgrRef;

+toString():String

m_ipAddress : String
m_tcpPort : TCPIPPort
m_tcpPortNumber : int

+ModemPortLocator(portLocationData,orb,traderGroup,commFailureDB)
#connectPort(connPortInfo, portManagercommsData,opDesc,tryNum,
 cmdStat, complete, errorMsgToAppend):int
-rspCodeToString(rspCode):String

-m_commPortconfig:CommPortconfig

+TCPPortLocator(ipportLocationData):
 TCPLocator
+getConnectedPort(opDescription, commandStatus):
ConnectedPortInfo
+releaseConnectedPort(connectedPortInfo):void
-connectPort(connPortInfo,opDesc,tryNum,cmdStat,
 complete,errorMsgtoAppend):int

getStatus():PortStatus
disconnect():void

+send(byteMessage: byte[]
+receive(initial:int, interchar:int, maxDuration:int)

TCPPort(ipAddress, tcpPort):TCPIPPort
+connect(IPPortLocationData):void throws PortOpenFailure,CHART2Exception
+send(dataBytes:byte[])throws DataPortIOException()
+receive(timeoutMillis):byte[] throws DataPortIOException
+receive(int initial, int interchar, int maxDuration)throws DataPortIOException()
+disconnect()throws DisconnectException()CHART2Exception()
+getPortType():PortType
+getPortStatus():PortStatus

m_ipAddress:String
m_tcpPort:int
m_socket:Socket
m_inputStream:InputStream
m_outputStream:OutputStream

Figure 5-49. PortLocatorClasses (Class Diagram)

CHART R8 Detailed Design Rev 2 5-38 08/01/2011

5.4.1.2.1 CommFailureCode (Class)

This class defines static values to be used to specify the type of comm failure in a CommFailureData object.

5.4.1.2.2 CommFailureData (Class)

This class holds data to be passed to the CommFailureDB class to be logged in the Comm failure log in the database.

5.4.1.2.3 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database. This table is used to log details about

any comm failure that occurs in the system.

5.4.1.2.4 ConnectedPortInfo (Class)

This class holds data pertaining to a port that was acquired and connected via the PortLocator.

5.4.1.2.5 DataPortEnabled (Class)

This interface is implemented by device specific communications classes. This interface provides an extra layer to remove

dependencies on device specific packages.

5.4.1.2.6 DataPortUtility (Class)

This class is a wrapper used to hide the underlying port being used to communicate (tcp/ip ,FMS, or DataPortEnabled port).

5.4.1.2.7 FMSConnectedPortInfo (Class)

This structure defines the data used to store and exchange information about a connected port. It is returned from the

PortLocator's getConnectedPort() method and is passed back into the PortLocator's release() method when it is time to release

the port.

5.4.1.2.8 FMSPortLocator (Class)

The FMSPortLocator is a utility class that helps one to utilize the fault tolerance provided by the deployment of many

PortManagers. The FMSPortLocator is initialized by specifying a preferred PortManager and optionally one or more alternate

CHART R8 Detailed Design Rev 2 5-39 08/01/2011

PortManagers using a PortLocationData object.

When asked to get a connected port, the PortLocator first attempts to acquire a port from the preferred PortManager and then

calls its abstract connectPort() method (implemented by derived classes) to attempt to connect to the port. If a failure occurs,

the FMSPortLocator retries the sequence using the next PortManager in the list. The list may contain the same port manager

multiple times to have retries occur on the same port manager prior to moving to another. In the event that the

FMSPortLocator will perform a retry on the same port manager, it holds the previously acquired port while performing the

retry to avoid having the port manager return the same port during the retry. When a different port is acquired during a retry

on the same port manager, the port is released (prior to connecting the 2nd port).

5.4.1.2.9 ModemPortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a ModemPort that

has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table

relating to connection problems that may occur.

5.4.1.2.10 Port (Class)

A Port is an object that models a physical communications resource. Derived interfaces specify various types of ports. All

ports must be able to supply their status when requested.

5.4.1.2.11 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to communicate with a device.

m_commsData - One or more objects identifying the communications server (PortManager) to use to communicate with the

device, in order of preference.

m_portType - The type of port to use to communicate with the device (ISDN modem, POTS modem, direct, etc.)

m_portWaitTimeSecs - The maximum number of seconds to wait when attempting to acquire a port from a port manager.

5.4.1.2.12 PortLocator (Class)

The PortLocator is a utility class that helps one to connect to the port used by the device. The actual implementation of the

operations is done by the derived classes depending on what protocol is used for communication.

CHART R8 Detailed Design Rev 2 5-40 08/01/2011

5.4.1.2.13 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for PortManager objects.

5.4.1.2.14 ProtocolHdlrDispatcher (Class)

This is an empty abstract placeholder class which device specific protocol handler dispatchers must extend. Classes that

extend this gain the ability to call a protocol handler method with the specific type of ConnectedPortInfo, thus reducing the

usage of if/else, switch, or instance of calls, without the need to subclass into separate protocol handlers based on the

ConnectedPortInfo type.

5.4.1.2.15 TCPConnectedPortInfo (Class)

This structure defines the data used to store and exchange information about a connected port. It is returned from the

PortLocator's getConnectedPort() method and is passed back into the PortLocator's release() method when it is time to release

the port.

5.4.1.2.16 TCPIPPort (Class)

This class provides access to a TCP/IP port for device communications.

5.4.1.2.17 TCPPortLocator (Class)

TCPPortLocator is a utility class that helps to establish and manage connection to a tcpip port.

5.4.1.2.18 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a VoicePort that

has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table

relating to connection problems that may occur. Since this is a telephony port which is much simpler to connect than, say, a

ModemPort, there will be considerably fewer types of errors which can occur and thus be detected and reported.

CHART R8 Detailed Design Rev 2 5-41 08/01/2011

5.4.2 Sequence Diagrams

5.4.2.1 AlertAndNotificationHelper:notifyAndAlert (Sequence Diagram)

This sequence diagram shows how an AlertAndNotificationHelper utility handles the task of sending alert and notification. If

the new operational status equals current operational status there is nothing else to do just return. If the status has just become

OK, set sendAlert flag to false (we do not send alert if status changed from COMM_FAILURE or HARDWARE_FAILURE

to OK) in any other cases set flag to true to indicate that alert need to be send . Based on alert/notification settings it will

decide what and whom to send.

[AccessDenied]

OperationsLog

[AccessDenied]

log

return

AlertFactoryWrapper

SHAZAMImpl

notifyAndAlert(DeviceAlertAndNotification,
oldStatus, newStatus, systemToken,

DeviceFailureDeviceType, Id)

[newStatus == COMM_FAILURE]

createDeviceFailureAlert()

return

set sendAlert = true

[sendAlert == true

sendGroupNotification()

[AlertTypeDisabledException]

[m_commFailureNotifyGroupInfo.groupId!=0 ||
m_hwFailureNotifyGroupInfo.groupId!=0

AlertAndNotificationHelper NotificationManagerWrapper

log

[newStatus == OK]

[newStatus == HARDWARE_FAILURE]

[newStatus==oldStatus]

set sendAlert = false

status change from OK
to HARDWARE_FAILURE or
COMM_FAILURE

send Alert and Notification

no Alert or
Notification

status changed from
COMM_FAILURE or
HARDWARE_FAILURE

send only Notification

set sendAlert = true

[m_commFailAlertOpcenter.id != NullIdentifier ||
m_amgToNotify !=NullIdentifier]

Figure 5-50. AlertAndNotificationHelper:notifyAndAlert (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-42 08/01/2011

5.5 HAR Control

5.5.1 Class Diagrams

5.5.1.1 HARControlModule (Class Diagram)

This class diagram shows classes that support the use of Highway Advisory Radio (HAR) devices in the Chart II system.

Details are only shown for classes that exist specifically for HAR control. Auxiliary classes used from other various utility or

system interface packages are shown by name only.

CHART R8 Detailed Design Rev 2 5-43 08/01/2011

R8:
Change from Fm s Connec tedPortIn fo s pec i fic m ethods to
to Connec tedPortIn fo bas e c las s and
adjus t m ethods prefix ed wi th fm s . Rem ov e a l l port
narrowing to protoc ol hd l r m ethods

R8:
Change from Fm s Connec tedPortIn fo s pec i fic m ethods
 to to Connec tedPortIn fo bas e c las s and
adjus t m ethods prefix ed wi th fm s . Rem ov e a l l port
narrowing to protoc ol hd l r m ethods

**

1

1

1

wai ts for SHAZAM and
c ons ti tuent HAR c m ds to
c om plete us ing

1

1

HARIm pl m ay be ISSAP55HARIm pl ,
HISDR1500HARIm pl , or Sy nc HARIm pl .
HARProtoc olHdl r m ay be
ISSAP55HARProtoc olHdl r or
HISDR1500HARProtoc olHdl r (or none).
HARDev ic eConfiguration is a un ion whic h
m ay be ISSAP55HARConfig ,
HISDR1500HARConfig , or Sy nc HARConfig .
HARSlotM anager pres ent on ly for
ISSAP55HARIm pl and HISDR1500HARIm pl .
See HARContro lM odule2 c las s d iagram .

1

1 or 2 loc ators -
M ay be 1 for m oni tor
port, depending on HAR
ty pe.

SyncCommandStatus

SlotClipAudioData

ArbQueueEntry

«v aluety pe»

HARRecoveryTimerTask

1 or 2 c m d queues -
M ay be 1 jus t for
M oni torBraodc as t,
depending on HAR m odel

SharedResourceM anager

«interfac e»

HARFactory

«interfac e»

HARData

«ty pe»

SharedResource

«interfac e»

HAR

«interfac e»

AudioPushConsumer

«interfac e»

AudioDataCollector

NoSpaceAvailableException

«ex c eption»

java.util.TimerTask

RefreshDateStampsTask

CheckForAbandonedHARTask

HARProtocolHdlr

ArbitrationQueue

«interfac e»

HARSlotM anager

CommandQueue

AudioClipM anager

«interfac e»

HARM sgNotifierWrapper

HARM essageNotifier

«interfac e»

QueueableCommand

«interfac e»

HARControlDB

PushEventSupplier

ServiceApplication

«interfac e»

java.util.Timer

HARControlM oduleProperties

HARControlM odule

ServiceApplicationM odule

«interfac e»

HARImpl

HARFactoryImpl

UniquelyIdentifiable

«interfac e»

M essageQueue

CommEnabled

«interfac e»

GeoLocatable

«interfac e»

HARDeviceConfig

«ty pedef»

HARStatus

«ty pedef»

DBConnectionM anager

M uxWaitSem

CommandStatus

«interfac e»

VoicePortLocator

VoicePort

«interfac e»

HAR holds
Voic ePort
tem porari ly
whi le
c om m unic ating
wi th dev ic e.

NotifierTfcEvtList

«ty pedef»

1

0..1

1

1

1

*

* 1

1

*

1

1

1

1

11

* 1

1
1

1

1

*

0..1

*

1

1

*

*

1

1

1

1

*

1

1

1

1

1

1

*

0..1

1 1

m ark s SHAZAM
and c ons ti tuent
HAR c m ds
c om plete wi th

0..2

1

1

1

1

1

1

1

0..1

0..1

*

1

1

*

1

1

0..1

*

R8: Added s upport for TCP

R8: Added m ethod for po l l ing

TCPPort

TCPortLocator

PortLocator

0..1

0..1

0..1

0..1

1

1

1

1

1

0..1

R8: Updates for
IP DR1500 c ontro l
and hardware fa i lure

ReadWri teLoc k m _rwLoc k
POA m _poa

String reas on

blank Im pl(Ac c es s Tok en, boolean m ode, Com m andStatus) : v o id
c hec k DateTim eFie lds () : v o id
c hec k Rec ov ery Tim e(in t tim eDown): boolean
m oni torSlotIm pl (Ac c es s Tok en, long s ec onds , long s lo t,
 AudioPus hCons um er, Com m andStatus): v o id
pol l IfNec es s ary ():v o id
pol lNow(Ac c es s Tok en, Com m andStatus): v o id
pol lNowIm pl(Ac c es s Tok en, po l lTy pe, String s uc c es s , Com m andStatus)
putInM aintM odeIm pl(Ac c es s Tok en, Com m andStatus) : v o id
putInM aintM odeWithSHAZAM s Im pl(Ac c es s Tok en, Com m andStatus ,
 HARM es s ageNoti fierL is t): v o id
putOffl ineIm pl(Ac c es s Tok en, Com m andStatus) : v o id
s etConfigurationIm pl(Ac c es s Tok en, HARConfiguration,
 Com m andStatus) : v o id
s etM es s ageIm pl(Ac c es s Tok en, HARM es s age, boolean m ode,
 Com m andStatus , HARM es s ageNoti fierL is t,
 ArbQueueEntry L is t, HARSetM s gCm d) : v o id
s etOneUpNum (long oneUpNum ber): v o id
s etTrans m i tterState(des i redState:boolean, forc eFlag:boolean): v o id
tak eOffl ineIm pl(Ac c es s Tok en, Com m andStatus) : v o id
s etLoc ation(tok en:by te[], loc ation:objec tLoc ation):v o id
-ac tiv ateNoti fiers M aint(HARM es s ageNoti fierIDLis t): v o id
-ac tiv ateNoti fiers Onl ine(Noti fierTfc Ev tL is t[]): v o id
-deac tiv ateNoti fiers M aint(HARM es s ageNoti fierIDLis t): v o id
-deac tiv ateNoti fiers Onl ine(Noti fierTfc Ev tL is t[]): v o id
-doChi ldStatus Update(): v o id
-ev aluateQueue(): v o id
-GetConnec tedPort(boolean pgm , Com m andStatus): Connec tedPortIn fo
-Releas ePort(Connec tedPortIn fo, boolean pgm): v o id
-handleM aintNoti fierAc tiv ation(M s gNoti fier[]): v o id
-handleM aintNoti fierDeac tiv ation(M s gNoti fier[]): v o id
-handleOnl ineNoti fierAc tiv ation(M s gNoti fier[], Tfc Ev t[]):v o id
-handleOnl ineNoti fierDeac tiv ation(M s gNoti fier[], Tfc Ev t[]):v o id
-handleOpStatus (OperationalStatus , Com m andStatus ,
 boolean c om plete): boolean
-m odi fy Noti fiers (Noti fierTfc Ev Lis t[]): v o id
-pers is tAndPus hHARConfig():v o id
-pers is tAndPus hHARStatus ():v o id
-rem ov alCleanupIm pl(): v o id
-reques tFai led(ArbQueueEntry [] newEntries , boolean o ldM s gSti l lUp): v o id
-reques tSuc c eeded(ArbQueueEntry [] newEntries): v o id
-s etupHAR(Port, Com m andStatus) : boolean
-v eri fy NoRes ourc eConfl ic t(Ac c es s Tok en, Com m andStatus): v o id

m _c trlPortLoc ator:PortLoc ator
m _ac tiv eEntries :ArbQueueEntry []
m _rec ov ery M ode:boolean
:boolean
m _updateDateTim eFai led
m _las tQueuedSetM s gCm d:QueueableCom m and

HARFac tory Im pl m _fac tory

long m _interM es s ageSpac ing
boolean m _s houldBeReev aluated
HARM es s ageNoti fierIDLis t m _Noti fiers Currently Ac tiv e
ArbQueueEntry [] m _ac tiv eEntries
long m _las tDateStam pUpdateTim e

getTim eDown()

HARFac tory Im pl m _fac tory

HARFac tory Im pl m _fac tory

Identi fier m _noti fierID
ArbQueueEntry Ind ic ator m _prim eEntry
Has hSet m _tfc Ev ts

HARSlotData s lo tData
AudioDataCl ip audio
boolean a l ready Stored
String errorTex t

c hec k ForAbandonedHAR(): v o id
rem ov eHAR(Identi fier id):v o id
s hutdown():v o id
c hec k ForAbandonedRes ourc es ():v o id
c hec k DateTim eFie ldUpdates ():v o id
c hec k HARRec ov ery (): v o id
getFi rs tIm m ediateSlotNum ber(): in t
getHARRuntim eSafety M arg inSec s ():in t
getM ax M s gRunTim eSec s (): in t
getPol lPortWai tTim eSec s (): in t
getRec ov ery PeriodM ins (): in t
getSHAZAM Ac tiv ateTim eoutSec s ():in t
getSHAZAM Deac tiv ateTim eoutSec s ():in t
getSHAZAM Offl ineTim eoutSec s (): in t
getSHAZAM Onl ineTim eoutSec s (): in t
getSHAZAM M aintTim eoutSec s (): in t
getTota lCom binedM s gRunTim e(): in t
po l lHARs ():v o id

jav a.lang.Vec tor m _harL is t;

getDic tionary ():Dic tionary
-reg is terTraderTy pes ():v o id

c hangeDes c rip tionOfSlotData(o ldCl ip :HARM es s ageCl ip ,
 newCl ip :HARM es s ageCl ip):v o id
s toreCl ip(Connec tedPortIn fo, des c , SlotCl ipAudioData, c m dStat,
 c om pleteOnFai lure:boolean, warnTx t:StringBuffer):v o id
s toreCl ips (Connec tedPortIn fo, des c , SlotCl ipAudioData[], c m dStat,
 c om pleteOnFai lure:boolean, warnTx t:StringBuffer):v o id
s toreM s g(Connec tedPortIn fo, SlotCl ipAudioData[], des c , c m dStat,
 c om pleteOnFai lure:boolean, warnTx t:StringBuffer):v o id
rem ov e(Connec tedPortIn fo, des c , s lo t:in t,c m dStat,
 c om pleteOnFai lure:boolean, warnTx t:StringBuffer, loc k Slots):v o id
res erv eStatus Fai ledRes et(SlotCl ipAudioData[],index):v o id
res toreAl l (Connec tedPortIn fo, des c , SlotCl ipAudioData[], c m dStat,
 eras e:boolean, c om pleteOnFai lure:boolean, warnTx t:StringBuffer) :v o id
-c l ip InSlot(HARM es s ageCl ip):in t
-c lonePriv ateSlotData(HARSlotData[]):HARSlotData[]
-c o l lec tAudioData(SlotCl ipAudioData[],des c ,c m dStat,c om plete:boolean):v o id
-deregis terNewly Regis teredCl ips ():v o id
-findCl ip(HARM es s ageCl ip , c l ipPos :s tring):in t
-fi rs tAv ai l Im m edSlot(prev Av ai l :in t,c m dStat):in t
-fm s DownloadCl ip(Connec tedPortIn fo, des c , s lo t, AudioDataCl ip ,
 c m dStat, c om pleteOnFai lure:boolean):v o id
-fm s Rem ov eCl ip(Connec tedPortIn fo, des c , s lo t:in t, c m dStat,
 c om pleteOnFai lure:boolean):v o id
-in i tPOA(des c , c m dStat,c om plete:boolean):v o id
-in i tPriv ateSlotData():v o id
-getCl ip InSlot(s lo tNum ber,des c ,Com m andStatus):HARM es s ageCl ip
getM i l l is Av ai lM s g():in t
getM i l l is Av ai lSlo t(s lo tNum ber):in t
has DataRes erv ed():boolean
is Us ingCl ip(Identi fier audioCl ip ID)(): boolean
deregis terAl lCl ips (): v o id
-prec hec k Spac eAv ai l (SlotCl ipAudioData[], des c , c m dStat,
 c om plete:boolean, prec hec k Ty pe:in t):v o id
prepareAudioDataForAl l (des c ,c m dStat,c om plete:boolean):SlotCl ipAudioData
prepareAudioDataForBlank M s g():SlotCl ipAudioData
prepareAudioDataForCl ip(s lo tData:HARSlotData,des c ,c m dStat,
 prec hec k Ty pe:in t):SlotCl ipAudioData
prepareAudioDataForCl ips (HARSlotData[],des c ,c m dStat):SlotCl ipAudioData[]
prepareAudioDataForDefaul tCl ips (des c ,HARDev ic eConfig ,c m dStat,
 c om plete:boolean):SlotCl ipAudioData
prepareAudioDataForM s g(HARM es age, c m dStat):SlotCl ipAudioData[]
-prepareCl ipForSlot(HARM es s ageCl ip , c l ipPos :s tring, prev Im m edSlotUs ed:in t,
 c m dStat):SlotCl ipAudioData
rebui ldPlay Lis tForM s g(HARM es s age):in t[]
-s lo tToBeReus ed(s lo tNum ber, SlotCl ipAudioData):boolean
-updateHARs SlotData(des c , warnTx t:StringBuffer):v o id

AudioDataCol lec tor(HARM es s ageCl ip c l ip ,
 ReadWri teLoc k rwLoc k)
c o l lec tData(): v o id

HARM es s ageCl ip m _c l ip
SlotCl ipAudioData m _data
by te[] m _c ol lec tedData

getDateStam pRefres hTim eOfDay ():s tring
getFi rs tIm m ediateSlotNum ber(): in t
getHARRuntim eSafety M arg inSec s ():in t
getM ax M s gRunTim eSec s (): in t
getPol lPortWai tTim eSec s (): in t
getPol lTim erDelay Sec s (): in t
getRec ov ery PeriodM ins (): in t
getRec ov ery Tim erDelay Sec s (): in t
getSharedRes M onIntSec s ():in t
getSHAZAM Ac tiv ateTim eoutSec s ():in t
getSHAZAM Deac tiv ateTim eoutSec s ():in t
getSHAZAM Offl ineTim eoutSec s (): in t
getSHAZAM Onl ineTim eoutSec s (): in t
getSHAZAM M aintTim eoutSec s (): in t
getTota lCom binedM s gRunTim e(): in t
getHARFac tory ID():Identi fier

HARContro lDB(db)
getObjec ts ():HARIm pl []
getConfiguration(Ac c es s Tok en):Chart2HARConfiguration
getStatus (Identi fier):Chart2HARStatus
ins ertHAR(Chart2HARConfiguration):v o id
rem ov eHAR(harID):v o id
s etConfiguration(Identi fier, Chart2HARConfiguration):v o id
s etStatus (Identi fier, Chart2HARStatus):v o id
getHISDR1500HARConfigWithConnec tion(Identi fier id , Connec tion c onn)
s etHISDR1500HARConfigWithConnec tion(Identi fier harID, HISDR1500HARc onfig c fg , Connec tion c onn);()

DBConnec tionM gr m _db

Figure 5-51 HARControlModule (Class Diagram)

5.5.1.1.1 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which

message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they

are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current

contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is

evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the

device is put online.

CHART R8 Detailed Design Rev 2 5-44 08/01/2011

5.5.1.1.2 ArbQueueEntry (Class)

This class is used for an entry on the arbitration queue, for a single message, and for a single traffic event. (It is possible, in

the case of HARNotifierArbQueueEntry objects, that certain ArbQueueEntries can be on behalf of multiple TrafficEvents. In

such cases, one TrafficEvent among all those involved is picked to be the responsible TrafficEvent stored in m_indicator, the

ArbQueueEntryIndicator for the entry.)

5.5.1.1.3 AudioClipManager (Class)

This interface provides a way to store audio data associated with HARMessageAudioDataClip objects, converting the

HARMessageAudioDataClip objects to HARMessageAudioClip objects in the process. The HARMessageAudioClip objects

are created with a reference back to the AudioClipManager in them, so that the audio clips themselves can provide access to

the audio data (through their stream() interface), by contacting the AudioClipManager (an AudioClipStreamer) to stream the

data. The AudioClipManager also provides a capability for various AudioClipOwners to register and deregister their

"interest" in a specific clip. When a clip no longer has any interested owners, it can be (and is) deleted from the database.

5.5.1.1.4 AudioDataCollector (Class)

This object is used to stream a HARMessageClip and write the streamed audio .wav data to a .wav file. It is used as a utility

by the HARSlotManager to prepare HARMessageClips for download into the HAR (which is accomplished via the

ISSAP55HARProtocolHdlr by passing the file name of the .wav file into it).

5.5.1.1.5 AudioPushConsumer (Class)

This interface is implemented by objects that wish to receive audio data using the push model, where the server pushes the

data to the consumer. One call to pushAudioProperties() will always precede any calls to pushAudio(). When the

AudioClipStreamer is done sending data in pushAudio() calls, it sends a pushCompleted() to indicate successful completion,

or a pushFailure() to indicate a failure which has prevented the streaming from completing. PushAudio() returns a boolean

"continue" flag, which, if returned as false, indicates that the consumer no longer wants to continue receiving audio data. In

this case, the stream stops pushing data immediately, with no call to pushCompleted() or pushFailure() necessary.

5.5.1.1.6 CheckForAbandonedHARTask (Class)

This class is a timer task that is executed periodically by a timer. When the run method in this class is called, it calls the

HARFactoryImpl's checkForAbandonedResources() method, which causes the factory to evaluate each HAR in the factory

and issue an abandoned resource event for any HARs which have a controlling op center with no users logged in.

CHART R8 Detailed Design Rev 2 5-45 08/01/2011

5.5.1.1.7 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses

to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the

CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended

task.

5.5.1.1.8 CommandStatus (Class)

The CommandStatus CORBA interface is used to allow a calling process to be notified of the progress of a long-running

asynchronous operation. This is normally used when field communications are involved to complete a method call. The most

common use is to allow a GUI to show the user the progress of an operation. It can also be used and watched by a server

process when it needs to call on another server process to complete an operation. The long running operation typically calls

back to the CommandStatus object periodically as the command is being executed, to provide in-progress status information,

and it always makes a final call to the CommandStatus when the operation has completed. The final call to the

CommandStatus from the long running operation indicates the success or failure of the command.

5.5.1.1.9 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode

through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer

available for use through the system and automated polling (if any) is halted. When put online, a device is again available for

use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a

device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of

device are allowed to help in troubleshooting.

5.5.1.1.10 DBConnectionManager (Class)

This class implements a database connection manager that manages a pool of database connections. Any CHART II system

thread requiring database access gets a database connection from the pool of connections maintained by this manager class.

The connections are maintained in two separate lists namely, inUseList and freeList. The inUseList contains connections that

have already been assigned to a thread. The freeList contains unassigned connections. This class assumes that an appropriate

JDBC driver has been loaded either by using the "jdbc.drivers" system property or by loading it explicitly. The class has a

monitor thread that is started by the constructor. This connection monitor thread periodically checks the inuseList to see if

there are connections that are owned by dead threads and move such connections to the freeList. The connection monitor

thread is started only if a non-zero value is specified for the monitoring time interval in the constructor.

CHART R8 Detailed Design Rev 2 5-46 08/01/2011

5.5.1.1.11 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

5.5.1.1.12 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related

information over a localized radio transmitter, making the information available to the traveler. This interface contains

methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating

and monitoring the HAR in maintenance and online modes.

5.5.1.1.13 HARControlDB (Class)

This class contains all the database interaction for the HARControlModule. This class provides the ability to retrieve all HAR

information on initialization, update of the configuration and status information, and insert or remove a HAR device from the

system.

5.5.1.1.14 HARControlModule (Class)

This class implements the ServiceApplicationModule interface, providing a platform for publishing HAR objects and the

HARFactory object within a service application. This class is the controlling class for the HAR module, providing for the

initialization and overall operation of the module. This class creates and starts the timer tasks necessary for refreshing

datestamps on the HAR, checking for abandoned shared resources, and recovery processing.

5.5.1.1.15 HARControlModuleProperties (Class)

This class contains settings from a properties file used to specify parameters to be used by objects within the

HARControlModule for the current instance of the application. These settings are read during the module initialization. The

module must be restarted to apply any changes made to the properties file.

5.5.1.1.16 HARData (Class)

This class is used to store and persist data pertaining to a HAR which is not part of the HARStatus (i.e., not transmitted to

clients in status updates or at any other time).

CHART R8 Detailed Design Rev 2 5-47 08/01/2011

5.5.1.1.17 HARDeviceConfig (Class)

HARDeviceConfig is a union which can contain the configuration for a ISS AP55 HAR, a HIS DR1500 HAR, or a

Synchronizable HAR (a "virtual" HAR representing a collection of synchronized HARs). In R2B3 only DR1500 HARs are

synchronizable.

5.5.1.1.18 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system. It also allows a requester to acquire a list of HAR

objects under the domain of the specific HARFactory object.

5.5.1.1.19 HARFactoryImpl (Class)

This class implements the HARFactory interface as defined by the IDL specified in the System Interfaces section. This class

maintains the HAR objects served by this HAR service.

5.5.1.1.20 HARImpl (Class)

This class implements HAR as defined by IDL specified in the System Interfaces section. Since there is only one model of

HAR currently envisioned for CHART II, this HARImpl class is implementing the ISS AP55 HAR specifically.

5.5.1.1.21 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to

tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and

allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the

HAR. This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a

SHAZAM-like message.

5.5.1.1.22 HARMsgNotifierWrapper (Class)

This wrapper class is used to wrap HAR message notifiers associated with a HAR. This class handles finding the reference of

the notifier object given only the object's ID. The object discovery is done at the point of first use or if a currently held

reference produces a CORBA failure when used.

CHART R8 Detailed Design Rev 2 5-48 08/01/2011

5.5.1.1.23 HARProtocolHdlr (Class)

The HARProtocolHdlr is an abstract base class declaring methods used in communicating with a HAR device.

5.5.1.1.24 HARRecoveryTimerTask (Class)

This Timer Task runs on a regular basis (on the order of every 15-30 seconds) during the life of the process. During normal

operations, this task's sole purpose is to write a timestamp to a file each time it is called. This timestamp file serves to

provide, to an approximation as accurate as its frequency of invocation, when the HARService last went down, an essential

piece of information for recovery during HARService startup. When the HARService has recently started up, this Task, in

addition to maintaining an up-to-date timestamp in the timestamp file, also calls a method in the Factory

(checkHARRecovery) which requests all HAR objects to check and see if their recovery period has expired. (The recovery

period is a system-wide constant, on the order of 10-15 minutes.) Each HAR terminates its recovery period as soon as all its

TrafficEvents are resolved, or when the message queue is modified through an addEntry or changePriority call, or, if neither

of those cases happens, at the end of the recovery period timer. (When all HARs have terminated their recovery period,

checkHARRecovery is no longer called.)

When each HAR checks its own recovery time, if it finds that it has just now exceeded the recovery period, it calls its

MessageQueue to take one last try at resolving traffic events on its queue, then the HAR makes final a determination as to

what message (or blank) belongs on the sign, and it requests the HAR to set its message appropriately (either to the

message(s) at the top of the queue, or to the default message, if no messages are queued.

5.5.1.1.25 HARSlotManager (Class)

This class manages the slot usage for the HARImpl. When a clip is to be stored in the HAR controller, this class is called

instead of calling the ISSAP55HARProtocolHdlr directly. This class ensures the reserved slot numbers (default header,

default trailer, default message, immediate message slots) are not overlaid with other clips stored in the controller. When

clips are stored in slots in the controller, this class keeps track of the run time for each and the total run time for the device and

provides an error when the storage of a clip exceeds the configured available run time of the device.

This class also manages the condition when multiple slots are needed for the current (immediate) message. This will be true

any time multiple messages are combined into one message on the HAR (up to the maximum play time for a combined

message). A HAR has many immediate slots available for cases such as this.

CHART R8 Detailed Design Rev 2 5-49 08/01/2011

5.5.1.1.26 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device. The data contained in this class is that

status information which can be transmitted from the HAR to the client as necessary. This struct is also used to within the

HAR Service to transmit data to/from the HARControlDB database interface class. (The HAR implementation also contains

other private status data elements which are not elements of this class.)

5.5.1.1.27 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.5.1.1.28 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.5.1.1.29 MessageQueue (Class)

This class represents a message queue object. It will provide the ability to add, remove, and reprioritize traffic event entries in

a prioritized list.

5.5.1.1.30 MuxWaitSem (Class)

This object is used block execution of a thread while it is running multiple long running commands which need to be waited

on. This class watches the SyncCommandStatus of each command and releases control back to the main thread when all

"child" long-running processes have completed their respective CommandStatus object.

5.5.1.1.31 NoSpaceAvailableException (Class)

This exception is thrown by the HARSlotManager when there is not enough room in the HAR to store the desired message as

requested. This exception is local to the HAR service only. If the exception needs to propagate out to a user (GUI), it is

converted to a CHART2Exception first. The distinction is required within the HAR service since a

NoSpaceAvailableException is not to be considered a failure of the device or the communications.

5.5.1.1.32 NotifierTfcEvtList (Class)

This class is used to keep track of the relationships between HAR notifiers, and the traffic events which are requesting that

they be activated. One traffic event is chosen to be the primary one, and is used as part of the ArbQueueEntryIndicator stored

CHART R8 Detailed Design Rev 2 5-50 08/01/2011

within this class. The m_primeEntry and m_tfcEvents are used as parameters to activate and/or modify the HAR notice on the

notifier.

5.5.1.1.33 PortLocator (Class)

The PortLocator is a utility class that helps one to connect to the port used by the device. The actual implementation of the

operations is done by the derived classes depending on what protocol is used for communication.

5.5.1.1.34 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a

reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is

used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have

crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To

avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect

interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval

and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a

supplier's push rate.

5.5.1.1.35 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for

asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it

is executed. This interface must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the

interrupted method is made when a CommandQueue is shut down.

5.5.1.1.36 RefreshDateStampsTask (Class)

This class is a timer task that is executed periodically by a timer. When executed, the run method of this class calls the

HARFactoryImpl's checkDateTimeFieldUpdates(), which in turn calls each HAR in the factory to have it determine if it needs

to update any field messages that use datestamp fields. These messages are reconverted to voice, and the datestamp tag, in the

format "<DATESTAMP>" is replaced by text words for the day of week, month, and day of month (e.g. "Wednesday, July

14"). The reconverted messages are then queued to be resent to the HAR.

CHART R8 Detailed Design Rev 2 5-51 08/01/2011

5.5.1.1.37 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These

services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA,

Trader, and Event Service.

5.5.1.1.38 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host

service is initialized and when it is shutdown. The implementing class can use these notifications along with the services

provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.5.1.1.39 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition

of the resource while the resource is in use.

5.5.1.1.40 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must

be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others

if there are any resources under its management that are controlled by a given operations center. The shared resource manager

is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource

doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push

an event on the ResourceManagement event channel to notify others of this condition.

5.5.1.1.41 SlotClipAudioData (Class)

This class is used to help keep track of and pass around slot data. This class associates a clip with a particular slot and usage,

and with a file name which contains its audio (wav) data. The fileName is passed to the ISSAP55ProtocolHdlr to store the

wav data in the slot.

5.5.1.1.42 SyncCommandStatus (Class)

A SyncCommandStatus implements the CommandStatus interface and performs a notification when it is completed. It is used

by the HAR service to track the activity of HARMessageNotifiers, which may operate asynchronously and provide status later

via a CommandStatus.

CHART R8 Detailed Design Rev 2 5-52 08/01/2011

5.5.1.1.43 TCPortLocator (Class)

TCPPortLocator is a utility class that helps to establish and manage connections to a tcpip port.

5.5.1.1.44 TCPPort (Class)

This class provides access to a TCP/IP port for device communications.

5.5.1.1.45 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be

generated by the IdentifierGenerator to ensure uniqueness.

5.5.1.1.46 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect it to a destination phone number

and perform send and receive operations while connected that result in DTMF or voice being sent across the telephone

connection to or from the device.

5.5.1.1.47 VoicePortLocator (Class)

This class provides an implementation of the PortLocator's abstract connectPort() method that can connect a VoicePort that

has been acquired by the PortLocator base class. This derived class logs information in the comm failure database table

relating to connection problems that may occur. Since this is a telephony port which is much simpler to connect than, say, a

ModemPort, there will be considerably fewer types of errors which can occur and thus be detected and reported.

5.5.1.2 HARControlModule2 (Class Diagram)

This class diagram shows classes that support the use of Highway Advisory Radio (HAR) devices in the Chart II system.

Details are only shown for classes that exist specifically for HAR control. Auxiliary classes used from other various utility or

system interface packages are shown by name only.

CHART R8 Detailed Design Rev 2 5-53 08/01/2011

DR1500HARResponse

1

SynchronizableHARConfig

«typedef»

1

1

SyncHARConfig

«typedef»

HARArbitrationQueue

1

HARDeviceConfig

«typedef»

HARConfig

«typedef»

A union, will

contain

ISSAP55HARConfig,

HISDR1500HARConfig,

or SyncHARConfig as

appropriate.

ISSAP55HARConfig

«typedef»

1

1

HISDR1500HARConfig

«typedef»

HARStatus

«typedef»

1

1

SynchronizableHARImpl

1 1

1

1

1

HISDR1500HARImpl

HARProtocolHdlr

ISSAP55HARProtocolHdlr

HARSlotManager

1

1
has constituents

0..1

1

ArbitrationQueue

«interface»

1

1

HAR

«interface»

has

HARProtocolHdlr

of this type

has HARProtocolHdlr

of appropriate subtype

1

ISSAP55HAR

«interface»

HISDR1500HAR

«interface»

ISSAP55HARImpl

SyncHARImpl

For most commands --

including Monitor Broadcast

for DR1500 and SyncHAR

and excluding only Monitor

Broadcast for AP55 and

Store/Delete Slot Message for

DR1500 and SyncHAR.

1

1

1

1

SynchronizableHAR

«interface»

SyncHAR

«interface»

HARImpl

HISDR1500ProtocolHdlr

1

R8: Updates for IP Control

Added double dispatching methods

fmsConnectedPortInfo or tcpConnectedPortInfo

AP55AndDR1500HARCommand

«enumeration»

R8: Updates for IP polling and

double dispatching based off

ConnectedPortInfo

R8: New

R8: Updates for polling

R8: Updates for IP Control

R8: Updates for

polling and IP Control

1

has

master

*

1

has HARProtocolHdlr

of this type

See HARQueueableCommandsClassDiagram

for types of QueueableCommand that can

go on this CommandQueue. All

QueueableCommand types can be put on

a HARImpl's CommandQueue, including

HARStoreSlotMsgCmd and HARDeleteSlotMsgCmd

but only for the AP55 type, and

HARMonitorBcastCmd, but only for DR1500 and

SyncHAR types. (For AP55 the

HARMonitorBcastCmd has its own separate

CommandQueue for the separate monitor line.)

CommandQueue

QueueableCommand

«interface»

CommandQueue

QueueableCommand

«interface»

HARMonitorBcastCmd

Only for

Monitor

Broadcast

*

1

*

As of noon 10/11/06, I have not validated that

the methods and attributes listed here are

accurate. (Don't know if anyone else has.)

--Scott

1

1

1

1

1

1

1

1

1

R8: Updates for IP Control

Removed fmsConnectedPortInfo and replaced

with ConnectedPortInfo

blankImpl(AccessToken, boolean mode, CommandStatus) : void

checkDateTimeFields() : void

checkRecoveryTime(int timeDown): boolean

monitorSlotImpl(AccessToken, long seconds, long slot,

 AudioPushConsumer, CommandStatus): void

pollIfNecessary():void

pollNow(AccessToken, CommandStatus): void

pollNowImpl(AccessToken, pollType, String success, CommandStatus)

putInMaintModeImpl(AccessToken, CommandStatus) : void

putInMaintModeWithSHAZAMsImpl(AccessToken, CommandStatus,

 HARMessageNotifierList): void

putOfflineImpl(AccessToken, CommandStatus) : void

setConfigurationImpl(AccessToken, HARConfiguration,

 CommandStatus) : void

setMessageImpl(AccessToken, HARMessage, boolean mode,

 CommandStatus, HARMessageNotifierList,

 ArbQueueEntryList, HARSetMsgCmd) : void

setOneUpNum(long oneUpNumber): void

setTransmitterState(desiredState:boolean, forceFlag:boolean): void

takeOfflineImpl(AccessToken, CommandStatus) : void

setLocation(token:byte[], location:objectLocation):void

-activateNotifiersMaint(HARMessageNotifierIDList): void

-activateNotifiersOnline(NotifierTfcEvtList[]): void

-deactivateNotifiersMaint(HARMessageNotifierIDList): void

-deactivateNotifiersOnline(NotifierTfcEvtList[]): void

-doChildStatusUpdate(): void

-evaluateQueue(): void

-GetConnectedPort(boolean pgm, CommandStatus): ConnectedPortInfo

-ReleasePort(ConnectedPortInfo, boolean pgm): void

-handleMaintNotifierActivation(MsgNotifier[]): void

-handleMaintNotifierDeactivation(MsgNotifier[]): void

-handleOnlineNotifierActivation(MsgNotifier[], TfcEvt[]):void

-handleOnlineNotifierDeactivation(MsgNotifier[], TfcEvt[]):void

-handleOpStatus(OperationalStatus, CommandStatus,

 boolean complete): boolean

-modifyNotifiers(NotifierTfcEvList[]): void

-persistAndPushHARConfig():void

-persistAndPushHARStatus():void

-removalCleanupImpl(): void

-requestFailed(ArbQueueEntry[] newEntries, boolean oldMsgStillUp): void

-requestSucceeded(ArbQueueEntry[] newEntries): void

-setupHAR(Port, CommandStatus) : boolean

-verifyNoResourceConflict(AccessToken, CommandStatus): void

m_ctrlPortLocator:PortLocator

m_activeEntries:ArbQueueEntry[]

m_recoveryMode:boolean

:boolean

m_updateDateTimeFailed

m_lastQueuedSetMsgCmd:QueueableCommand

createProtocolHdlr() :

 ISSAP55ProtocolHdlr changeDescriptionOfSlotData(oldClip:HARMessageClip,

 newClip:HARMessageClip):void

storeClip(ConnectedPortInfo, desc, SlotClipAudioData, cmdStat,

 completeOnFailure:boolean, warnTxt:StringBuffer):void

storeClips(ConnectedPortInfo, desc, SlotClipAudioData[], cmdStat,

 completeOnFailure:boolean, warnTxt:StringBuffer):void

storeMsg(ConnectedPortInfo, SlotClipAudioData[], desc, cmdStat,

 completeOnFailure:boolean, warnTxt:StringBuffer):void

remove(ConnectedPortInfo, desc, slot:int,cmdStat,

 completeOnFailure:boolean, warnTxt:StringBuffer, lockSlots):void

reserveStatusFailedReset(SlotClipAudioData[],index):void

restoreAll(ConnectedPortInfo, desc, SlotClipAudioData[], cmdStat,

 erase:boolean, completeOnFailure:boolean, warnTxt:StringBuffer) :void

-clipInSlot(HARMessageClip):int

-clonePrivateSlotData(HARSlotData[]):HARSlotData[]

-collectAudioData(SlotClipAudioData[],desc,cmdStat,complete:boolean):void

-deregisterNewlyRegisteredClips():void

-findClip(HARMessageClip, clipPos:string):int

-firstAvailImmedSlot(prevAvail:int,cmdStat):int

-fmsDownloadClip(ConnectedPortInfo, desc, slot, AudioDataClip,

 cmdStat, completeOnFailure:boolean):void

-fmsRemoveClip(ConnectedPortInfo, desc, slot:int, cmdStat,

 completeOnFailure:boolean):void

-initPOA(desc, cmdStat,complete:boolean):void

-initPrivateSlotData():void

-getClipInSlot(slotNumber,desc,CommandStatus):HARMessageClip

getMillisAvailMsg():int

getMillisAvailSlot(slotNumber):int

hasDataReserved():boolean

isUsingClip(Identifier audioClipID)(): boolean

deregisterAllClips(): void

-precheckSpaceAvail(SlotClipAudioData[], desc, cmdStat,

 complete:boolean, precheckType:int):void

prepareAudioDataForAll(desc,cmdStat,complete:boolean):SlotClipAudioData

prepareAudioDataForBlankMsg():SlotClipAudioData

prepareAudioDataForClip(slotData:HARSlotData,desc,cmdStat,

 precheckType:int):SlotClipAudioData

prepareAudioDataForClips(HARSlotData[],desc,cmdStat):SlotClipAudioData[]

prepareAudioDataForDefaultClips(desc,HARDeviceConfig,cmdStat,

 complete:boolean):SlotClipAudioData

prepareAudioDataForMsg(HARMesage, cmdStat):SlotClipAudioData[]

-prepareClipForSlot(HARMessageClip, clipPos:string, prevImmedSlotUsed:int,

 cmdStat):SlotClipAudioData

rebuildPlayListForMsg(HARMessage):int[]

-slotToBeReused(slotNumber, SlotClipAudioData):boolean

-updateHARsSlotData(desc, warnTxt:StringBuffer):void

HAR m_har

CommandStatus m_cmdStat

byte[] token

long seconds

long chunksize

AudioPushConsumer consumer

-doChildStatusUpdate():void

m_lastStatusUpdate:HARStatusUpdate

IPPortLocationData m_ipportLocationData[]

PortLocationData m_portLocationData[]

initiateProgramming(ConnectedPortInfo port, String accessCode):void

-initiateProgramming(VoicePort port, String accessCode):void

terminateProgramming(ConnectedPortInfo port):void

-terminateProgramming(VoicePort port):void

recordMessage(ConnectedPortInfo port, String msgFileName, int slotNumber):void

-recordMessage(TCPPort port, String msgFileName, int slotNumber):void

-recordMessage(VoicePort port, String msgFileName, int slotNumber):void

deleteMessage(ConnectedPortInfo port, int slotNumber):void

-deleteMessage(TCPPort port, int slotNumber):void

-deleteMessage(VoicePort port, int slotNumber):void

reset(ConnectedPortInfo port):void

-reset(VoicePort port):void

-reset(TCPPort port):void

broadcastSlots(ConnectedPortInfo port, int[] slotNumbers):void

-broadcastSlots(VoicePort port, int[] slotNumbers):void

-broadcastSlots(TCPPort port, int[] slotNumbers):void

monitorSlot(ConnectedPortInfo port, String fileName, int slotNumber, int numSecs): void

poll(ConnectedPortInfo port):void

-poll(TCPPort port):void

monitorSlot(ConnectedPortInfo port, String fileName, int slotNumber, int numSecs): void

-monitorSlot(VoicePort port, String fileName, int slotNumber, int numSecs): void

setTransmitterState(ConnectedPortInfo port, boolean transmitterState):void

-setTransmitterState(TCPPort port, boolean transmitterState):void

-setTransmitterState(VoicePort port, boolean transmitterState):void

setInterMessageSpacingInSecs(ConnectedPortInfo port port, int spacing):void

-setInterMessageSpacingInSecs(VoicePort port port, int spacing):void

-sendSerialDataToHAR(TCPPort port, data[])

-sendDMTFToHAR(VoicePort port, String tones)

createProtocolHdlr() :

 HISDR1500ProtocolHdlr

pollIfNecessary():void

validateCfg(HISDR1500Config cfg):void

setStatus(HISDR1500Status status):void

getStatus():HISDR1500HARStatus

-getHARGroupList():

-broadcastSlotsSynchronized(VoicePort port, HarList)

-recordMessageSynchronized(VoicePort port, String msgFileName, int slotNumber):void

-m_syncHARConfig:SyncHARConfiguration

-m_syncHARHISHARRefList:IdentifierList

m_harConfig

m_harConfig

m_masterHARID

enableAlternateSource(VoicePort port):void

SET_REC_SPEED_CMD

SET_REC_SPEED_2_CMD

ENABLE_ALT_SOURCE_CMD

ALT_SOURCE_STATE_CMD

TERM_PROG_CMD

MON_ALL_MSGS_CMD

m_syncConfig m_harConfig

m_harIDList

Figure 5-52. HARControlModule2 (Class Diagram)

CHART R8 Detailed Design Rev 2 5-54 08/01/2011

5.5.1.2.1 AP55AndDR1500HARCommand (Class)

This enumeration class is responsible for building the DTMF string and serial byte commands for sending to AP55 and

DR1500 HARs.

5.5.1.2.2 ArbitrationQueue (Class)

An ArbitrationQueue is a queue that arbitrates the usage of a device. The evaluation of the queue determines which

message(s) should be on the device, based upon the priority of the queue entries. When entries are added to the queue, they

are assigned a priority level based on the type of traffic event with which they are associated, and also upon the current

contents of the queue. The priority of the queue entries can be modified after they are added to the queue. The queue is

evaluated when the device is online and queue entries are added or removed, when an entry's priority is modified, or when the

device is put online.

5.5.1.2.3 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses

to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the

CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended

task.

5.5.1.2.4 DR1500HARResponse (Class)

This class contains helper methods for verifying and parsing DR1500 HAR responses.

5.5.1.2.5 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related

information over a localized radio transmitter, making the information available to the traveler. This interface contains

methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating

and monitoring the HAR in maintenance and online modes.

5.5.1.2.6 HARArbitrationQueue (Class)

This class provides the implementation of an arbitration queue tailored for HAR devices.

CHART R8 Detailed Design Rev 2 5-55 08/01/2011

5.5.1.2.7 HARConfig (Class)

This class holds data pertaining to a HAR device's configuration.

5.5.1.2.8 HARDeviceConfig (Class)

HARDeviceConfig is a union which can contain the configuration for a ISS AP55 HAR, a HIS DR1500 HAR, or a

Synchronizable HAR (a "virtual" HAR representing a collection of synchronized HARs). In R2B3 only DR1500 HARs are

synchronizable.

5.5.1.2.9 HARImpl (Class)

This class implements HAR as defined by IDL specified in the System Interfaces section. Since there is only one model of

HAR currently envisioned for CHART II, this HARImpl class is implementing the ISS AP55 HAR specifically.

5.5.1.2.10 HARMonitorBcastCmd (Class)

This class contains data needed to execute a request to monitor the current message being broadcast on the HAR.

5.5.1.2.11 HARProtocolHdlr (Class)

The HARProtocolHdlr is an abstract base class declaring methods used in communicating with a HAR device.

5.5.1.2.12 HARSlotManager (Class)

This class manages the slot usage for the HARImpl. When a clip is to be stored in the HAR controller, this class is called

instead of calling the ISSAP55HARProtocolHdlr directly. This class ensures the reserved slot numbers (default header,

default trailer, default message, immediate message slots) are not overlaid with other clips stored in the controller. When

clips are stored in slots in the controller, this class keeps track of the run time for each and the total run time for the device and

provides an error when the storage of a clip exceeds the configured available run time of the device.

This class also manages the condition when multiple slots are needed for the current (immediate) message. This will be true

any time multiple messages are combined into one message on the HAR (up to the maximum play time for a combined

message). A HAR has many immediate slots available for cases such as this.

CHART R8 Detailed Design Rev 2 5-56 08/01/2011

5.5.1.2.13 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device. The data contained in this class is that

status information which can be transmitted from the HAR to the client as necessary. This struct is also used to within the

HAR Service to transmit data to/from the HARControlDB database interface class. (The HAR implementation also contains

other private status data elements which are not elements of this class.)

5.5.1.2.14 HISDR1500HAR (Class)

This interface is implemented by objects that provide for the control of an HIS model DR1500 HAR.

5.5.1.2.15 HISDR1500HARConfig (Class)

This class holds configuration data for an HIS model DR1500 HAR.

5.5.1.2.16 HISDR1500HARImpl (Class)

This class implements HISDR1500HAR as defined by IDL specified in the System Interfaces section.

5.5.1.2.17 HISDR1500ProtocolHdlr (Class)

The HISDR1500ProtocolHdlr is a class declaring methods used in communicating with a DR1500 HAR device.

5.5.1.2.18 ISSAP55HAR (Class)

This CORBA interface is implemented by objects that provide for the control of an ISS model AP55 HAR.

5.5.1.2.19 ISSAP55HARConfig (Class)

This class holds configuration data for an ISS model AP55 HAR

5.5.1.2.20 ISSAP55HARImpl (Class)

This class implements the ISSAP55HAR interfaces as defined in IDL.

5.5.1.2.21 ISSAP55HARProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an ISS AP55 HAR device.

CHART R8 Detailed Design Rev 2 5-57 08/01/2011

5.5.1.2.22 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for

asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it

is executed. This interface must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the

interrupted method is made when a CommandQueue is shut down.

5.5.1.2.23 SyncHAR (Class)

This class is used to represent a synchronized Highway Advisory Radio (HAR) device. A synchronized HAR can have

constituent HARs that it operates in a synchronized mode, allowing a continuous message to be delivered to the motorist as

they travel out of range of one HAR and into the range of another.

5.5.1.2.24 SyncHARConfig (Class)

This class holds configuration data for a synchronized HAR.

5.5.1.2.25 SyncHARImpl (Class)

This class is implemented by objects that allow for the control of multiple HISDR1500HAR devices. Multiple

HISDR1500HARs can be assigned or to one SyncHAR object we call this a SyncHAR group. The HISHARs can be active

(transmitter on) or inactive (transmitter off). These devices are controlled as a group meaning the operator issues one

command that is executed on all active HISHARs in the group. These comannds are HISHAR object commands. Messages

can be synchronized to play on all active HISHARs simultaneously. All messages will be placed in the same slot on each

active HISHAR. There is another type of command handled by the SyncHARImpl, SyncHAR object commands. SyncHAR

commands create, remove or modify the SyncHARImpl object. These commands are executed on the group or SyncHAR

object but not on the HISHARs which are members of the group.

5.5.1.2.26 SynchronizableHAR (Class)

This CORBA interface is implemented by objects that allow for control of HAR devices which can become constituents of a

SyncHAR.

CHART R8 Detailed Design Rev 2 5-58 08/01/2011

5.5.1.2.27 SynchronizableHARConfig (Class)

This class holds configuration for a HAR that can operate in a synchronized mode.

5.5.1.2.28 SynchronizableHARImpl (Class)

This class implements the SynchronizableHAR interface as defined in IDL.

5.5.1.3 HARQueueableCommandClassDiagram (Class Diagram)

This class diagram shows the classes derived from QueueableCommand necessary for HAR Control. A class exists for each

type of command that can be executed asynchronously on a HAR object.

HARRefreshDateStampCmd

HARSetupCmd

HARPutInM aintM odeCmd

HARStoreSlotM sgCmdHARTakeOfflineCmd

HARSetTransmitterStateCmd

Added in R8

HARPollCmd

*

*

m _onl ine new for R2B3: fals e for
norm al R2B2-ty pe m aintenanc e m ode
c l ient c om m ands and for R2B3
peerGoingOnl ine reques ts from peers ;
true for a reques t from the m as ter
Sy nc HAR to go s i lent whi le onl ine.

SetM essageFromM asterCmd

m _forc eFlag new for R2B3:
true i f c al led from c l ient -
c ontac t HAR regardles s of
c urrent s tate; fa ls e i f c al led from
a peer Sy nc hroniz ableHAR -
c ontac t the HAR only i f c urrent
s tate does not m atc h
m _des iredState. Ignored i f
m _onl ine is true.

HARRemovalCleanupCmd

HARResetCmd

HARBlankCmd

HARM onitorBcastCmd

HARSetConfigCmd

Note: Two other QueueableCom m ands affec ting
HARs not s hown on this diagram are
HARSetM es s ageCom m and and HARBlank Dev ic eCom m and,
whic h are Dev ic eUti l i ty QueueuableCom m ands us ed by
the HARArbi trationQueue. Thos e inv ok e HARIm pl m ethods
s etM s gFrom QueueIm pl() and blank HARFrom QueueIm pl(),
res pec tiv ely .

HARDeleteSlotM sgCmd

HARPutOnlineCmd

HARSetM sgCmd

HARM onitorSlotCmd

QueueableCommand

«interface»

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en
Chart2HARConfiguration m _c onfig

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en

HAR m _har
HARM s gNoti ferIDLis t m _SHAZAM s
Com m andStatus m _c m dStat
by te[] tok en

ex ec ute()
interrupted()

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en

HAR m _har
HARM es s age m _harM s g
int m _reques tID
by te[] m _tok en

HAR m _har
HARM s gNoti fierIDLis t m _SHAZAM s
Com m andStatus m _c m dStat
by te[] tok en

getM es s age(): HARM es s age

HAR m _har;
Com m andStatus m _c m dStat
by te[] tok en
boolean m _m aintM ode
boolean m _dateTim eRefres h
HARM es s age m _m s g
HARArbQueueEntry [] m _entries

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en
HARM es s age m _m s gToBeUpdated

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en
long m _s lotNum ber
HARM es s age m _m s g

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en
boolean m _m aintM ode

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en
long m _s lotNum ber

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en
long m _s lotNum ber
long s ec onds
long c hunk s iz e
AudioPus hCons um er c ons um er

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en
boolean m _des iredState
boolean m _forc eFlag
boolean m _onl ine

HAR m _har
Com m andStatus m _c m dStat
by te[] tok en
long s ec onds
long c hunk s iz e
AudioPus hCons um er c ons um er

Figure 5-53. HARQueueableCommandClassDiagram (Class Diagram)

CHART R8 Detailed Design Rev 2 5-59 08/01/2011

5.5.1.3.1 HARBlankCmd (Class)

This command object is used to blank the message on the HAR, which involves setting the message to the HAR's default

message.

5.5.1.3.2 HARDeleteSlotMsgCmd (Class)

This class is used to hold data necessary to execute a maintenance mode request to delete a message from a slot on the HAR

device.

5.5.1.3.3 HARMonitorBcastCmd (Class)

This class contains data needed to execute a request to monitor the current message being broadcast on the HAR.

5.5.1.3.4 HARMonitorSlotCmd (Class)

This class contains data needed to execute a maintenance mode request to monitor a particular slot on a HAR.

5.5.1.3.5 HARPollCmd (Class)

This class contains data needed to execute a maintenance mode request to issue the poll command for the HAR. Only IP

controlled DR1500 HARS support polling.

5.5.1.3.6 HARPutInMaintModeCmd (Class)

This class contains data needed to execute a request to put a HAR into maintenance mode.

5.5.1.3.7 HARPutOnlineCmd (Class)

This class contains data needed to execute a request to put a HAR online.

5.5.1.3.8 HARRefreshDateStampCmd (Class)

This class contains data needed to execute a request to update the datestamp fields in a clip which is stored on the HAR

device. This QueueableCommand, unlike most, does not reflect a user action, but reflects an action of the HARImpl itself to

update its datestamp(s). The HARImpl checks for the need to update its datestamps every night shortly after midnight and

queues these requests as necessary.

CHART R8 Detailed Design Rev 2 5-60 08/01/2011

5.5.1.3.9 HARRemovalCleanupCmd (Class)

This class contains data needed to execute a request to clean up a HARImpl as it is being deleted. Unlike most other

QueueableCommands, this command is queued by the HAR Service itself, not by a client. When a HAR is removed from the

CHART II system, it may have any number of HARMessageAudioClips stored in it, and the HAR's interest in those clips

needs to be deregistered with the Audio Clip Service. Rather than do this synchronously as the client request to remove the

HAR is being processed, the client request is processed quickly by queuing this command for the HAR. This command, being

the only command on the CommandQueue at this point, will then immediately be executed. When the command completes,

this command, the HAR, and its CommandQueue will be deleted, in order, having no other references to them, and the HAR's

removal will have been completed.

5.5.1.3.10 HARResetCmd (Class)

This class contains data needed to execute a maintenance mode request to reset a HAR controller.

5.5.1.3.11 HARSetConfigCmd (Class)

This class contains data needed to execute a request to change the configuration values of a HAR.

5.5.1.3.12 HARSetMsgCmd (Class)

This class contains data needed to execute a request to set the message played on a HAR. A flag is used to indicate if the

message was set via a maintenance mode command or via the arbitration queue.

5.5.1.3.13 HARSetTransmitterStateCmd (Class)

This class contains data needed to execute a request to change the state (on or off) of the transmitter on a HAR device. This

class also contains data needed for a SynchronizedHAR call to ensureTransmitterOff(), called when the SynchronizedHAR

goes online, to ensure that the transmitter of all its peer SynchronizableHAR devices is off. The m_forcedFlag is new for

R2B3. This flag is true if called from the client (the HAR is contacted regardless of the current state of the transmitter), and

false if called from a peer SynchronizableHAR (the HAR is contacted only if the current state does not match the desired state

(off)). Another use for this command is to queue and execute a request from a SynchronizableHAR's master SyncHAR to

become silent (transmitter off) when the SyncHAR arbitration queue so dictates, based ot the transmitters (constituent HARs)

selected by the user in the highest priority ArbQueueEntry.

CHART R8 Detailed Design Rev 2 5-61 08/01/2011

5.5.1.3.14 HARSetupCmd (Class)

This class contains data needed to execute a maintenance mode request to issue the setup command for the HAR.

5.5.1.3.15 HARStoreSlotMsgCmd (Class)

This class contains data needed to execute a maintenance mode request to store a message clip into a slot within the HAR

controller.

5.5.1.3.16 HARTakeOfflineCmd (Class)

This class contains data needed to execute a request to take a HAR offline.

5.5.1.3.17 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for

asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it

is executed. This interface must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the

interrupted method is made when a CommandQueue is shut down.

5.5.1.3.18 SetMessageFromMasterCmd (Class)

This class contains data needed to execute a request from a SyncHAR to set a message to be played on one of its own constituent

SynchronizableHAR objects.

CHART R8 Detailed Design Rev 2 5-62 08/01/2011

5.5.2 Sequence Diagrams

5.5.2.1 HARControlModule:PollHarInBackground (Sequence Diagram)

This diagram shows the processing that occurs when an HAR is polled from the HARFactory

pollIfNecessary()

pollHar()

HARFactoryImpl

PollHarTask java.util.T imerTask

HARImpl

createPollHarTask

run()

[*for each har]

createHarFactory

HARServ ice

Figure 5-54. HARControlModule:PollHarInBackground (Sequence Diagram)

5.5.2.2 HARControlModule:fmsGetConnectedPort (Sequence Diagram)

This sequence diagram shows how a HARImpl object gets a voice or tcp/ip connected port. This method is called from many

methods in the HAR service, whenever communications to the device is needed. A TCP/IP port is obtained from the control

port locator object if it's a TCPPortLocator instance. A voice port is obtained from one of the HARImpl's two

CHART R8 Detailed Design Rev 2 5-63 08/01/2011

VoicePortLocator objects if the control port locator object is a VoicePortLocator instance. For voice ports, depending on the

"control" flag passed in: if control is true, the standard control (i.e., programming) port locator is used; if false, the monitor

port locator is used. (The monitor port is used only for the MonitorBroadcast function for ap55 devices.) If a control port is

requested, on failure a call is made to the helper method handleOpStatus to deal with the case where the operational status has

changed. The CommandStatus is either updated or completed during the call to the PortLocator object based on a flag passed

into this method. If the control flag is true and the device is configured to use a voice port, the HARProtocolHdlr method

initiateProgramming() is called, which enters the access code ("PIN") DTMF tones, etc., in order to into the HAR and be

reaady to execute programming commands on the HAR. This method is used by both the ISSAP55HAR and the

HISDR1500HAR, and the HARProtocolHandler shown in the diagram will be the one appropriate for the type of HAR.

This sequence diagram shows how a HARImpl object gets a voice or tcp/ip connected port. This method is called from many methods in the HAR service, whenever communications to the device is needed.
A TCP/IP port is obtained from the control port locator object if it's a TCPPortLocator instance. A voice port is obtained from one of the HARImpl's two VoicePortLocator objects if the control port locator object
is a VoicePortLocator instance. For voice ports, depending on the "control" flag passed in: if control is true, the standard control (i.e., programming) port locator is used; if false, the monitor port locator is used.
(The monitor port is used only for the MonitorBroadcast function for ap55 devices.) If a control port is requested, on failure a call is made to the helper method handleOpStatus to deal with the case where the
operational status has changed. The CommandStatus is either updated or completed during the call to the PortLocator object based on a flag passed into this method. If the control flag is true and the device
is configured to use a voice port, the HARProtocolHdlr method initiateProgramming() is called, which enters the access code ("PIN") DTMF tones, etc., in order to into the HAR and be reaady to execute programming
commands on the HAR. This method is used by both the ISSAP55HAR and the HISDR1500HAR, and the HARProtocolHandler shown in the diagram will be the one appropriate for the type of HAR.

R8: TCPConnectedPortInfo or
fmsConnectedPortInfo

Can be either DR1500ProtocolHdlr or
ISSAP55ProtocolHdlr

Set not to complete cmdStat.

Completes cmdStat.
Updates, persists, & pushes
status if necesary. Note: if going
after monitor port, status is not
to be affected.

InitiateProgramming turns the
transmitter off. If transmitter is
currently on, turn it off now in
our status, and push and persist.

Completes cmdStat.
Updates, persists, & pushes
status if necesary. Note: if going
after monitor port, status is not
to be affected.

For R8, this will be a VoicePortLocator,
or a TCPPortLocator.

PortLocatorHARImpl

HARImpl

HARProtocolHdlr

If control == true, use m_portLocator.
If control == false, use m_monitorPortLocator.

[control == false]
ConnectedPortInfo

[voice port communications]
initiateProgramming(port, m_config.m_deviceAccessCode)

[transmitter was already off or tcp comms]
ConnectedPortInfo

[success]

CHART2Exception

handleOpStatus()

ConnectedPortInfo

CHART2Exception

[control true]
handleOpStatus()

[failure]
CHART2Exception

getConnectedPort

fmsGetConnectedPort(control)

[failure]
HARProtocolException

Figure 5-55. HARControlModule:fmsGetConnectedPort (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-64 08/01/2011

5.5.2.3 HARControlModule:fmsReleasePort (Sequence Diagram)

This helper method releases an FMSor TCP port which is no longer needed. First, if the "control" flag is true and the port is

an FMS port, the HARProtocolHdlr method terminateProgramming() is called to punch in the final DTMF tones to inform the

HAR that we are done with the call and ready to hang up. It disconnects the port, and finally calls the correct PortLocator

(control or monitor) or to release the port back into the pool. Errors are logged, but not reported on the CommandStatus, as

the port will be released or reclaimed in any case, and errors relating to releasing a port would mask an otherwise successful

status or more a useful error status.This method is used by both the ISSAP55HAR and the HISDR1500HAR, and the

HARProtocolHandler shown in the diagram will be the one appropriate for the type of HAR

Can be either DR1500ProtocolHdlr or
ISSAP55ProtocolHdlr

[m_status.m_transmitterStateOn false]
notify("HAR programming complete")

If control == true, use m_portLocator.
If control == false, use m_monitorPortLocator.

For R8, this be a VoicePortLocator or a
TCPPortLocator. DR1500 HARS support
TCP/IP Communications

HARImpl

If any errors occur,
log it, but continue
processing.

[m_status.m_transmitterStateOn true]
notify("HAR programming complete, transmitter resumes transmitting")

PortHARImpl

disconnect

fmsReleasePort(port, control)

NotificationChannel

[control == true && ! TCPConnectedPort]
terminateProgramming(port)

PortLocator HARProtocolHdlr

releasePort(port)

Figure 5-56. HARControlModule:fmsReleasePort (Sequence Diagram)

5.5.2.4 HARControlModule:pollHARs (Sequence Diagram)

This diagram shows the processing that occurs when hars are routinely polled by the system. For R8, only DR1500 hars

communicating over TCP protocol are pollable. HARs are polled either routinely by the system, on demand from the user, or

by a HAR,to confirm har status after a setup command.

CHART R8 Detailed Design Rev 2 5-65 08/01/2011

HISDR1500ProtocolHdlr

getStatus()

This diagram shows the processing that occurs when hars are routinely polled by the system. For R8,
only DR1500 hars communicating over TCP protocol are pollable. HARs are polled either routinely by the system,
on demand from the user, or by a HAR,to confirm har status after a setup command.

HARPollTask

execute()

processPollResults(HARStatus status)

HARProtocolHdlr

getStatus()

harStatus

See HISDR1500ProtocolHdlr:getStatus

See HARControlModule:processPollResults

HARFactoryImpl HARImpl

Polling not enabled/supported,
device was offline/in maintenance mode,
or not enough time has passed since the
last polling interval

HARImpl

PollHARNowCommand

CommandQueue

pollHARs()

[for each
HAR]

pollIfNecessary

[not necessary]

new(har,token,
pollType,cmdStat)

cmd

add(cmd)

pollNowImpl(token,pollType,
cmdSuccess,cmdStat)

Figure 5-57. HARControlModule:pollHARs (Sequence Diagram)

5.5.2.5 HARControlModule:processPollResults (Sequence Diagram)

This diagram shows the processing that occurs when analyzing the poll results for a HAR. Only DR1500 Hars operating in

TCP/IP mode support polling. If status results fall outside of configured hardware failure thresholds, the operational status

will change and alerts/notifications will be sent if configured. If a playlist,transmitter, or control timestamp mismatch is

detected, a setup har command will be issued.

CHART R8 Detailed Design Rev 2 5-66 08/01/2011

[change detected]
pushHARStatus

persistHARStatus

update last setup time
if successful.

HARImpl

This diagram shows the processing that occurs when analyzing the poll results for a HAR. Only
DR1500 Hars operating in TCP/IP mode support polling. If status results fall outside of configured
hardware failure thresholds, the operational status will change and alerts/notifications will be sent
if configured. If a playlist,transmitter, or control timestamp mismatch is detected, a setup har command will be issued.

HISDR1500HARImpl
HARImpl

voltage below min threshold
 broadcast mon % outside threshold
modulation outside threshold
VSWR > than threshold

processPollResult(HISDR1500HARStatus status,
boolean changeDetected, byte[] token

CommandStatus cmdStat, ConnectePortInfo port)

processPollResult(HISDR1500HARStatus status,
boolean changeDetected, byte[] token

CommandStatus cmdStat, ConnectePortInfo port

[transmitter state or playlist mismatch]
setupImpl(byte[] token)

[control timestamp mismatch]
setupImpl(byte[]token)

 handleOpStatus(OperationalStatus.HARDWARE_FAILURE, false, null, e.reason,
 false);

Update last mismatch time

Figure 5-58. HARControlModule:processPollResults (Sequence Diagram)

5.5.2.6 HARControlModule:slotMgrStore (Sequence Diagram)

This helper method is used by the HARSlotManager to store one clip in one slot. This may be for an immediate message to

be immediately played on the HAR, or it may be for the default header, message, or trailer, or it may be for a prestored slot

being stored now on the HAR for possible broadcast at a later time. This method first determines whether the clip will fit,

based on the run time returned by the clip itself (which could be an estimate for a text clip which has never been previewed).

If the clip is deemed not to fit, a NoSpaceAvailableException is returned, otherwise, This method is used by both the

ISSAP55HAR and the HISDR1500HAR, and the HARProtocolHandler shown in the diagram will be the one appropriate for

the type of HAR to record the message, stored in the file specified, to the HAR. If the slot previously had a clip in it, the

HAR's interest in that clip is deregistered, if it is an audio clip. The slot data for the HAR is updated and the method returns.

CHART R8 Detailed Design Rev 2 5-67 08/01/2011

In R8 we can determine if
the download succeeded if using
TCP/IP communications for DR1500
devices.

In R8 port will either be
fmsConnectedPortInfo or tcpConnectedPortInfo

Can be either ISSAP55 or
HISDR1500 Protocol Hdlr

Since there is no way of acuiring status from the HAR to determine
if the download succeeded, this HARRuntimeSafetyMarginSecs is
a way of increasing the odds of success. This number provides
a buffer against the total runtime available on the HAR. It would be
extremely unwise to attempt to fill the HAR right to the exact second,
especially since the run time returned by a text clip can be only an
estimate.

adjust by
HARRuntimeSafetyMarginSecs

HARMessageAudioClip

m_status m_status.m_slotDataHARProtocolHdlr
HARSlotManager

HARImpl

On success
or failure.

HARControlDB

setSlotData

[clip will not fit]
NoSpaceAvailableException

"verify new clip will fit"

"subtract out run time of clip
currently in this slot, if any

[slotClipFileData.m_usage = IMMEDIATE]
getSecsAvailImmediate

[slotClipFileData.m_usage != IMMEDIATE]
getSecsAvailForPrestore

delete wav file
slotClipFileData.m_fileName

end sychronize

"store new clip and usage into slot data for this slot"

[failure]
CHART2Exception

[old clip formerly in slot instanceof HARMesageAudioClip]
deregisterInterest(harID)

"get old slot data for this slot"

synchronize

[success]

[failure]
HARProtocolException

store(port, slotClipFileData)

recordMessage(port,
slotClipFileData.m_fileName,

slotClipFileData.m_slot)

Figure 5-59. HARControlModule:slotMgrStore (Sequence Diagram)

5.5.2.7 HARControlModule:DBdeleteHAR (Sequence Diagram)

This diagram shows the processing performed to delete a HAR from the database. Data related to the HAR is deleted from

the following tables: HAR_MSG_CLIP, HAR_MSG, HAR_STATUS, OBJECT_LOCATION, and

DEVICE_ALERT_NOTIFICATION, and HAR. The database statements are executed as a transaction to ensure the database

is not left in an inconsitent state if a statement fails.

CHART R8 Detailed Design Rev 2 5-68 08/01/2011

java.sql.ConnectionHARControlDB

delete data for the HAR from the following tables:

HAR_MSG_CLIP

HAR_MSG

HAR_STATUS

OBJECT_LOCATION

DEVICE_ALERT_NOTIFICATION

HAR

DBConnectionManager

deleteHAR(harID)

DBUtility

releaseConnection

getConnection

[error]

java.sql.SQLException

executeUpdate

[error]

rollback

executeSQLStatement

"Create SQL

Statement"

close

[error]

CHART2Exception

HARFactoryImpl

[error]

DBUtilityException

create java.sql.Statement

setAutoCommit(OFF)

[error]

CHART2Exception

createStatement

[*for each

SQL Statement]

setAutoCommit(ON)

[success]

commit

Figure 5-60 HARControlModule:DBdeleteHAR (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-69 08/01/2011

5.6 HAR Protocols

5.6.1 Class Diagrams

5.6.1.1 HARProtocolsPkg (Class Diagram)

This class diagram shows the protocol handler classes that are related to HAR control.

CHART R8 Detailed Design Rev 2 5-70 08/01/2011

HISDR1500ProtocolHdlr

R8:New

TCPIPPort

0..1

DR1500HARResponse

AP55AndDR1500HARCommand

«enumeration»

VoicePort

«interface»

HARProtocolException

«exception»

ISSAP55HARProtocolHdlr

HARProtocolHdlr

10..1

R8: added ConnectePortInfo, TCPPort,
and VoicePort versions of methods

1

initiateProgramming(ConnectedPortInfo port, String accessCode):void
-initiateProgramming(VoicePort port, String accessCode):void
terminateProgramming(ConnectedPortInfo port):void
-terminateProgramming(VoicePort port):void
recordMessage(ConnectedPortInfo port, String msgFileName, int slotNumber):void
-recordMessage(TCPPort port, String msgFileName, int slotNumber):void
-recordMessage(VoicePort port, String msgFileName, int slotNumber):void
deleteMessage(ConnectedPortInfo port, int slotNumber):void
-deleteMessage(TCPPort port, int slotNumber):void
-deleteMessage(VoicePort port, int slotNumber):void
reset(ConnectedPortInfo port):void
-reset(VoicePort port):void
-reset(TCPPort port):void
broadcastSlots(ConnectedPortInfo port, int[] slotNumbers):void
-broadcastSlots(VoicePort port, int[] slotNumbers):void
-broadcastSlots(TCPPort port, int[] slotNumbers):void
monitorSlot(ConnectedPortInfo port, String fileName, int slotNumber, int numSecs): void
poll(ConnectedPortInfo port):void
-poll(TCPPort port):void
monitorSlot(ConnectedPortInfo port, String fileName, int slotNumber, int numSecs): void
-monitorSlot(VoicePort port, String fileName, int slotNumber, int numSecs): void
setTransmitterState(ConnectedPortInfo port, boolean transmitterState):void
-setTransmitterState(TCPPort port, boolean transmitterState):void
-setTransmitterState(VoicePort port, boolean transmitterState):void
setInterMessageSpacingInSecs(ConnectedPortInfo port port, int spacing):void
-setInterMessageSpacingInSecs(VoicePort port port, int spacing):void
-sendSerialDataToHAR(TCPPort port, data[])
-sendDMTFToHAR(VoicePort port, String tones)

enableAlternateSource(VoicePort port):void

SET_REC_SPEED_CMD
SET_REC_SPEED_2_CMD
ENABLE_ALT_SOURCE_CMD
ALT_SOURCE_STATE_CMD
TERM_PROG_CMD
MON_ALL_MSGS_CMD

broadcastSlots(ConnectedPortInfo port, int[] slotNumbers)
-broadcastSlots(TCPPort port, int[] slotNumbers)
-broadcastSlots(VoicePort port, int[] slotNumbers)
-activatePlayList(VoicePort port, int playlist):void
-activatePlayList(TCPPort port, int playlist):void
reset(ConnectePortInfo port):void
-reset(VoicePort port):void
-reset(TCPPort port):void
setInterMessageSpacingInSecs(ConnectedPortInfo port, int spacing):void
-setInterMessageSpacingInSecs(VoicePort port, int spacing):void
-setInterMessageSpacingInSecs(TCPPort port, int spacing):void
-trimRecordedMessage(VoicePort port, int message)
-trimRecordedMessage(TCPPort port, int message)
-setDTMFResponseMode(VoicePort port, int mode)
-getAvailableMinutes(TCPPort port):in
-getAvailableMinutes(VoicePort port):in
-reclaimMemory(TCPPort port):bool
-reclaimMemory(VoicePort port):bool
recordMessage(ConnectedPortInfo port, String msgFileName, int slotNumber):void
-recordMessage(TCPPort port, String msgFileName, int slotNumber):void
-recordMessage(VoicePort port, String msgFileName, int slotNumber):void
-sendTCPDataToHAR(TCPPort port, AP55AndDR1500HARCommand cmd, byte[] data):byte[]
-sendDTMFDataToHAR(VoicePort port, String data):void
-getSystemStatus(TCPPort port):HISDR1500HARStatus
-getSystemTimeStamp(TCPPort port):long
-getTransmitterStatus(TCPPort port):HISDR1500HARStatus

connect(phoneNo:string):void
getSupportedFormats():AudioDataFormat[]
playDTMF(dtmfCodes:string, interToneDelayMillis:int):void
playReadDMTF(dtmfCodes:string, interToneDelayMillis:int,
 readChars:long, timeouts:readTimeouts,
 terminationChar:string)
playReadDMTFDynLength(dtmfCodes:string, interToneDelayMillis:int,
 lengthFieldStart:int, lengthFieldEnd:int, timeouts:readTimeouts,
 terminationChar:string)
playAudio(clip:AudioDataClip, preDTMFCmds:string,
 postDTMFCmds:string, dtmfCmdDelimiter:string,
 intertoneDelayMillis:int):void
recordAudio(numSecs:int, format:AudioDataFormat,
 preDTMFCmds:string, dtmfCmdDelimiter:string,
 interToneDelayMillis:int):void
receiveDTMFTones():int[]

Strinng reason

parseResponse(String response):boolean
parseResponse(byte[] response):boolean
parseHARModeAndSubModeFromResponse(byte[]response, HISDR1500HARStatus status):HISDR1500HARStatus
parseHARSoftwareRevisionFromResponse(byte[] response):int
parseHARSoftwareBuildFromResponse(byte[] response):int
parseHAREPROMFromResponse(byte[] response):int
parseLastCommandTimeStampFromResponse(byte[] response):long
parseSystemStatusFromResponse(byte[] response, HISDR1500HARStatus status):HISDR1500HARStatus
parseTransmitterModeFromResponse(byte[] response, HISDR1500HARStatus status):HISDR1500HARStatus

DTMF_RESPONSE_PREFIX
DTMF_CMD_SUFFIX
DTMF_RESPONSE_SUFFIX
SERIAL_RESPONSE_PREFIX
AC_POWER_ON
AC_POWER_OFF
TRANSMITTER_OFF
TRANSMITTER_ON
HAR_MODE_OFF
HAR_MODE_PLAYLIST
HAR_SUBMODE_INDIVIDUAL_MSG
HAR_SUBMODE_PLAYLIST_NON_SYNCH
HAR_SUBMODE_PLAYLIST_SYNCH
PACKET_LENGTH_EXCEPTION
DASH_SEPARATOR_EXCEPTION
COMMAND_CODE_EXCEPTION
COMMAND_FORMAT_EXCEPTION
COLON_SEPERATOR_EXCEPTION
DR1500_NO_RESPONSE_EXCEPTION

TCPPort(ipAddress, tcpPort):TCPIPPort
+connect(IPPortLocationData):void throws PortOpenFailure,CHART2Exception
+send(dataBytes:byte[])throws DataPortIOException()
+receive(timeoutMillis):byte[] throws DataPortIOException
+receive(int initial, int interchar, int maxDuration)throws DataPortIOException()
+disconnect()throws DisconnectException()CHART2Exception()
+getPortType():PortType
+getPortStatus():PortStatus

m_ipAddress:String
m_tcpPort:int
m_socket:Socket
m_inputStream:InputStream
m_outputStream:OutputStream

AP55AndDR1500HARCommand(String m_cmdString, char cmdType)
getDTMFCommand(int[] payload):String
getByteCommand(int[] payload):byte[]

m_cmdString: String
m_cmdBytes: byte[]
DTMF_HEADER_CHAR
DTMF_DELIMITER_CHAR
DTMF_GET_SEPARATOR_CHAR
DTMF_SET_SEPARATOR_CHAR
SERIAL_CMD_CODE_LEN
SERIAL_GET_HEADER_CHAR
SERIAL_SET_HEADER_CHAR
SERIAL_PACKET_LEN_SEPARATOR_CHAR
SERIAL_COMMAND_SEPARATOR_CHAR
SERIAL_DATA_ELEMENT_SEPARATOR_CHAR
SERIAL_DATA_START_INDEX
SET_REMOTE_SECURITY_CODE
RECORD_MSG
MONITOR_MSG
MONITOR_BROADCAST
MONITOR_ALL_SLOTS
ERASE_MSG
SET_SPACING
BROADCAST_SLOTS
SET_TRANSMITTER_ON
SET_TRANSMITTER_OFF
SET_RECORDING_SOURCE_INPUT
SET_RESPONSE_MODE
SET_RESPONSE_MODE_SRC
RESPONSE_MODE_DTMF
RESPONSE_MODE_NONE
SET_DTMF_RESPONSE_DELAY
SET_SPEAKER_PHONE_INPUT
TERMINATE_PROGRAMMING
RESET_CONTROLLER
SET_RELAY
ENABLE_MONITOR_LINE
PLAY_CMD_LIST
GET_TIME_AVAILABLE
GET_TIME_STAMP
GET_SYSTEM_STATUS
GET_TRANSMITTER_MODE
GET_HAR_MODE_AND_SUB_MODE
GET_HAR_SOFTWARE_REVISION
GET_HAR_SOFTWARE_BUILD_NUMBER
GET_HAR_EPROM_CHECKSUM
GET_DCC_SOFTWARE_REVISION_AND_DATE
DOWNLOAD_BINARY_MESSAGE

Figure 5-61 HARProtocolsPkg (Class Diagram)

5.6.1.1.1 AP55AndDR1500HARCommand (Class)

This enumeration class is responsible for building the DTMF string and serial byte commands for sending to AP55 and

DR1500 HARs.

CHART R8 Detailed Design Rev 2 5-71 08/01/2011

5.6.1.1.2 DR1500HARResponse (Class)

This class contains helper methods for verifying and parsing DR1500 HAR responses.

5.6.1.1.3 HARProtocolException (Class)

This class represents an exception that is thrown by HAR protocol classes when an unexpected error is encountered.

5.6.1.1.4 HARProtocolHdlr (Class)

The HARProtocolHdlr is an abstract base class declaring methods used in communicating with a HAR device.

5.6.1.1.5 HISDR1500ProtocolHdlr (Class)

The HISDR1500ProtocolHdlr is a class declaring methods used in communicating with a DR1500 HAR device.

5.6.1.1.6 ISSAP55HARProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with an ISS AP55 HAR device.

5.6.1.1.7 TCPIPPort (Class)

This class provides access to a TCP/IP port for device communications.

5.6.1.1.8 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect it to a destination phone number

and perform send and receive operations while connected that result in DTMF or voice being sent across the telephone

connection to or from the device.

CHART R8 Detailed Design Rev 2 5-72 08/01/2011

5.6.2 Sequence Diagrams

5.6.2.1 AP55AndDR1500HARCommand:getByteCommand (Sequence Diagram)

This diagram shows the processing that occurs when generating an array of bytes to send over a TCP port. Commands are a

stream of bytes, where each byte represents the ascii code of a character.

write(cmdCode)

HARProtocolHdlr

This diagram shows the processing that occurs when generating an array of bytes to send over a TCP port. Commands
are a stream of bytes, where each byte represents the ascii code of a character.

AP55AndDR1500HARCommand

Ap55andDR1500HARCommand.CmdType.getByteCommand(int[] cmdData)

write(cmdBytes,0,outputStreamLength)

byte[] ascii character array

getByteArray()

byte[] cmdBytes

reset()

write(outputStreamLength,0,3)

intToAsciiBytes(int dataParam)

[for each]
cmdData element]

write(SERIAL_PACKET_LEN_SEPARATOR_CHAR)

intToAsciiBytes(int outputStreamLength)

byte[] outputStreamLength

[if not last cmdData]
write(SERIAL_DATA_ELEMENT_SEPARATOR_CHAR)

getByteArray()

byte[] ascii character array

ByteUtil

write(asciiBytes)

byte[] asciiBytes

[has command data]
write(SERIAL_CMD_SEPARATOR_CHAR)

write(cmdBytes,0,cmdBytes.length)

ByteArrayOutputStreamnew()

Figure 5-62 AP55AndDR1500HARCommand:getByteCommand (Sequence Diagram)

5.6.2.2 AP55AndDR1500HARCommand:getDTMFCommand (Sequence Diagram)

This diagram shows the processing that occurs when generating a string of DTMF commands to send over a voice port.

CHART R8 Detailed Design Rev 2 5-73 08/01/2011

toString()

return DTMF command string

append(DTMF_DELIMITER_CHAR)
[foreach command

parameter]

append(param)

HARProtocolHdlr

This diagram shows the processing that occurs when generating a string of DTMF commands to send over
a voice port

Ap55AndDR1500HARCommand

StringBuffer

Ap55andDR1500HARCommand.getDTMFCommand(int[]cmdData)

new

append(DTMF_HEADER_CHAR)

append(m_cmdString)

append(DTMF_DELIMITER_CHAR)

Figure 5-63. AP55AndDR1500HARCommand:getDTMFCommand (Sequence Diagram)

5.6.2.3 AP55AndDR1500HARCommand:parseLastCommandTimeStampFromResponse (Sequence Diagram)

This diagram shows the detailed processing that occurs for reading the actual ascii byte code data in the response and

converting it into a long representing time since epoch.

CHART R8 Detailed Design Rev 2 5-74 08/01/2011

integer representing year

asciiBytesToInt(response,startMonthIndex,2)

integer representing month

asciiBytesToInt(response,startDayIndex,2)

integer representing day

asciiBytesToInt(response,startHourIndex,2)

integer representing hour

asciiBytesToInt(response,startMinIndex,2)

asciiBytesToInt(response,startSecIndex,2)

new()

set(year,month,day,hour,min,sec)

getTimeInMillis()

long timeInMillis

long timeInMillis

HISDR1500ProtocolHdlr
DR1500HARResponse ByteUtil

See ByteUtil.asciiBytesToInt

Calendar

parseLastCommandTimeStampFromResponse(byte[] response)

asciiBytesToInt(response,startYearIndex,2)

This diagram shows the detailed processing that occurs for
reading the actual ascii byte code data in the response and converting
it into a long representing time since epoch.

Figure 5-64. AP55AndDR1500HARCommand:parseLastCommandTimeStampFromResponse (Sequence Diagram)

5.6.2.4 HISDR1500ProtocolHdlr:BroadcastSlots (Sequence Diagram)

This sequence diagram shows the processing of broadcastSlots command of HIS DR1500 HAR protocol. For Voide port

controlled devices, this involves dialing the DTMF tones for broadcast slots command (*5#) and then dialing the message

number for each message to be broadcast (1#, #2, #3... for broadcasting messages 1,2,3...). For TCP/IP controlled devices,

this involves building up a near DTMF equivalent byte array of ascii coded characters. A HARProtocolException is raised if

an unexpected error is encountered.

CHART R8 Detailed Design Rev 2 5-75 08/01/2011

See HISDR1500ProtocolHdlr.sendSerialDataToHAR

parseTonesResponse(tones)

return dtmf tones string

[unexpected error]
CHART2Exception

[Comm Failed]
CommFailedException

[success]
success code]

[tones not received]
CommFailedException

[failure]
failure code

[unexpected error]
HARProtocolException

broadcastSlots(slot numbers)

[fmsConnectedPortInfo]
playReadDTMFTones(String dtmfTones)

HISDR1500HarImpl

HISDR1500ProtocolHdlr VoicePort

See VoicePortImpl:playReadDTMFTones

This sequence diagram shows the processing of broadcastSlots command of HIS DR1500 HAR protocol. For Voide port controlled devices, this involves dialing the DTMF tones for broadcast
s lots command (*5#) and then dialing the message number for each message to be broadcast (1#, #2, #3... for broadcasting messages 1,2,3...). For TCP/IP controlled devices, this involves
 building up a near DTMF equivalent byte array of ascii coded characters. A HARProtocolException is raised if an unexpected error is encountered.

sendSerialDataToHAR(port, BROADCAST_SLOTS, s lotNumbers

parseByteResponse(bytes)

[response not received]
CommFailedException

Figure 5-65. HISDR1500ProtocolHdlr:BroadcastSlots (Sequence Diagram)

5.6.2.5 HISDR1500ProtocolHdlr:getHARModeAndSubMode (Sequence Diagram)

This diagram shows the processing that occurs when the har mode, submode, and synch mode status is queried

CHART R8 Detailed Design Rev 2 5-76 08/01/2011

int synchMode

This diagram shows the processing that occurs when the har mode, submode, and synch mode status is queried.

HISDR1500ProtocolHdlr AP55AndDR1500HARResponse

parseHARModeAndSubModeFromResponse(byte[] response,
HISDR1500HARStatus status)

[problem communicating with HAR]
HISDR1500ProtocolHdlrException(message)

int harMode

HISDR1500HARProtocolHdlrException(message)

asciiBytesToInt(response,modeIndex,2)

HISDR1500HARStatus status

HISDR1500ProtocolHdlr

returns byte[] response

ByteUtil

[fmsConnectedPort]
throw CHART2Exception("not supported")

[error parsing response]
HISDR1500HARProtocolHdlrException(message)

int subMode

HISDR1500HARStatus status

sendSerialDataToHAR(GET_HAR_MODE_AND_SUB_MODE)

asciiBytesToInt(response,subModeIndex,2)

asciiBytesToInt(response,synchModeIndex,2)

getHARModeAndSubMode(ConnectedPortInfo port, HISDR1500HARStatus status)

Figure 5-66. HISDR1500ProtocolHdlr:getHARModeAndSubMode (Sequence Diagram)

5.6.2.6 HISDR1500ProtocolHdlr:getLastCmdTimeStamp (Sequence Diagram)

This diagram shows the processing that occurs when a command is issued to get the last control timestamp from a DR1500

Har. This command is only supported for devices using TCP communications.

CHART R8 Detailed Design Rev 2 5-77 08/01/2011

returns byte[] response

sendSerialDataToHAR(ConnectedPortInfo port, int cmdCode)

getLastCmdTimeStamp()

This diagram shows the processing that occurs when a command is issued to get the last
control timestamp from a DR1500 Har. This command is only supported for devices using
TCP communications.

See HISDR1500ProtocolHdlr.sendSerialDataToHAR

parseLastCmdTimeStampFromResponse(response)

long CHART timestamp

long timeStamp

AP55AndDR1500HARResponse

[Problem sending or recieving]
throw TCPProtocolHdlrException(String message)

HISDR1500ProtocolHdlr
HISDR1500ProtocolHdlr

[fmsConnectedPort]
throw CHART2Exception [not supported]

Figure 5-67. HISDR1500ProtocolHdlr:getLastCmdTimeStamp (Sequence Diagram)

5.6.2.7 HISDR1500ProtocolHdlr:getStatus (Sequence Diagram)

This diagram shows the processing that occurs when retrieving the system status from the HAR, transmitter, and DCC. We

retreive various status data from the HAR to determine if the device is operating in the state CHART thinks it's in.

CHART R8 Detailed Design Rev 2 5-78 08/01/2011

This diagram show s the processing that occurs w hen retrieving the system status
from the HAR, transmitter, and DCC. We retreive various status data from the HAR to
determine if the device is operating in the state CHART thinks it's in.

HISDR1500HARImpl

HISDR1500HARProtocolHdlr

HISDR1500HARStatus[not ip controlled]

getLastControlCmdTimeStamp()

status

new

getPlayList()

getStatus()

getHARModeAndSubMode(status)

getSystemStatus(status)

getHARSVersionInformation()

getTransmitterStatus(status)

Figure 5-68. HISDR1500ProtocolHdlr:getStatus (Sequence Diagram)

5.6.2.8 HISDR1500ProtocolHdlr:getSystemStatus (Sequence Diagram)

This diagram shows the processing that occurs for retrieving the DR1500 system status. The system status includes voltage,

power state, and broadcast monitor percent.

CHART R8 Detailed Design Rev 2 5-79 08/01/2011

int broadcastMonitorPercent

[problem parsing response]
HISDR1500ProtocolhdlrException(message)

[fmsConnectedPort]
throw CHART2Exception("not supported")

HISDR1500ProtocolHdlr

getSystemStatus(ConnectedPortInfo port,HISDR1500HARStatus status)

This diagram shows the processing that occurs for retrieving the DR1500 system status. The system status
includes voltage, power state, and broadcast monitor percent.

AP55AndDR1500HARResponse ByteUtil

HISDR1500HARStatus status

sendSerialDataToHAR(GET_SYSTEM_STATUS)

parseSystemStatusFromResponse(byte[] response, HISDR1500HARStatus status)

HISDR1500HARStatus status

asciiBytesToInt(response,startVoltageIndex,5)

int voltage

asciiBytesToInt(response,powerIndex,1)

asciiBytesToInt(response,broadcastMonitorPct,3)

HISDR1500ProtocolHdlr

int powerOn

[problem communicating with HAR]
HISDR1500ProtocolHdlrException(message)

Figure 5-69. HISDR1500ProtocolHdlr:getSystemStatus (Sequence Diagram)

5.6.2.9 HISDR1500ProtocolHdlr:getTransmitterMode (Sequence Diagram)

This diagram shows the processing that occurs when the transmitter mode is queried and updated in the status. Transmitter

mode is either on or off

This diagram shows the processing that occurs when the transmitter mode is queried and updated in the status. Transmitter
mode is either on or off

HISDR1500ProtocolHdlr

HISDR1500ProtocolHdlr

returns byte[] response

AP55AndDR1500HARResponse ByteUtil

[fmsConnectedPort]
throw CHART2Exception("not supported")

parseTransmitterModeFromResponse(byte[] response)

getTransmitterMode(ConnectedPortInfo port)

[problem communicating with HAR]
HISDR1500ProtocolHdlrException(message)

[error parsing response]
HISDR1500HARProtocolHdlrException(message)

int tranmitterMode

int transmitterMode

HISDR1500HARProtocolHdlrException(message)

sendSerialDataToHAR(GET_TRANSMITTER_MODE)

asciiBytesToInt(response,modeIndex,1)

HISDR1500HARStatus status

Figure 5-70. HISDR1500ProtocolHdlr:getTransmitterMode (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-80 08/01/2011

5.6.2.10 HISDR1500ProtocolHdlr:getTransmitterStatus (Sequence Diagram)

This diagram shows the processing that occurs when the transmitter status is queried and updated in the status. Transmitter

status includes set tx power, forward power, reflectedPower, vswr ratio, and modulation percent.

int forwardPower

asciiBytesToInt(response,reflectedPowerIndex,4)
int reflectedPower

asciiBytesToInt(response,vswrIndex, 4)

asciiBytesToInt(response,modulationPctIndex,3)
int vswrRatio

int modulationPercent

HISDR1500HARStatus status
HISDR1500HARStatus status

[error parsing response]
HISDR1500HARProtocolHdlrException(message)HISDR1500HARProtocolHdlrException(message)

returns byte[] response

AP55AndDR1500HARResponse ByteUtil

[fmsConnectedPort]
throw CHART2Exception("not supported")

sendSerialDataToHAR

[problem communicating with HAR]
HISDR1500ProtocolHdlrException(message)

parseTransmitterStatusFromResponse(byte[] response,
HISDR1500HARStatus status)

HISDR1500ProtocolHdlr

HISDR1500ProtocolHdlr

getTransmitterStatus(ConnectedPortInfo port, HISDR1500HARStatus status)

This diagram shows the processing that occurs when the transmitter status is queried and updated in the status. Transmitter
status includes set tx power, forward power, reflectedPower, vswr ratio, and modulation percent.

asciiBytesToInt(response,setPowerIndex,3)

int setPower

asciiBytesToInt(response,forwardPowerIndex,4)

Figure 5-71. HISDR1500ProtocolHdlr:getTransmitterStatus (Sequence Diagram)

5.6.2.11 HISDR1500ProtocolHdlr:reclaimMemory (Sequence Diagram)

This diagram shows the processing that occurs when reclaiming memory on a DR1500 HAR through a DCC using TCP/IP

communications.

CHART R8 Detailed Design Rev 2 5-81 08/01/2011

This diagram shows the processing that occurs when reclaiming memory on a DR1500 HAR through a DCC using TCP/IP communications.

HISDR1500ProtocolHdlr
HISDR1500ProtocolHdlr

reclaimMemory(TCPConnectedPortInfo port)

sendSerialDataToHAR(port,RECLAIM_MEMORY)

[problem reclaiming memory]
HARProtocolHdlrException(msg)

Figure 5-72. HISDR1500ProtocolHdlr:reclaimMemory (Sequence Diagram)

5.6.2.12 HISDR1500ProtocolHdlr:recordMessage (Sequence Diagram)

This diagram shows the processing that occurs when downloading a binary audio message to a DR1500 HAR through a DCC

using TCP/IP communications.

CHART R8 Detailed Design Rev 2 5-82 08/01/2011

getAvailableMinutes

[availableMinutes < 10]
HARProtocolHdlrException("No space for message")

getAvailableMinutes

intToAsciiBytes(slot)

sendSerialDataToHAR(port,RECORD_MSG, slot)

[problem downloading audio data]
HARProtocolHdlrException(msg)

sendSerialDataToHar(port,DOWNLOAD_BINARY_MSG,binaryClipData)

This diagram shows the processing that occurs when downloading a binary audio message to a DR1500 HAR through a DCC using TCP/IP communications.

HARSlotManager
HISDR1500OProtocolHdlr

This method will format the data clip for
binary download. Formatting includes adding
padding, adjusting byte values, and adding
intermessage spacing to the data.

ByteUtil

prepareAudioClipForBinaryDownload

recordMessage(TCPConnectedPortInfo port,int slot, AudioClipData data)

[availableMinutes < 10]
reclaimMemory(port)

byte[] slot

[problem issuing command to record message]
HARProtocolHdlrException(msg)

Figure 5-73. HISDR1500ProtocolHdlr:recordMessage (Sequence Diagram)

5.6.2.13 HISDR1500ProtocolHdlr:sendSerialDataToHAR (Sequence Diagram)

This diagram shows the processing that occurs when a serial command is issued to a HISDR1500HAR over a TCPPort. The

command is issued. A response is received. The response is checked for validity, and returned if valid. If the response is

invalid, a protocol handler exception is thrown back to the caller.

CHART R8 Detailed Design Rev 2 5-83 08/01/2011

This diagram shows the processing that occurs when a serial command is issued to a HISDR1500HAR
over a TCPPort. The command is issued. A response is received. The response is checked for validity,
and returned if valid. If the response is invalid, a protocol handler exception is thrown back to the caller.

HISDR1500ProtocolHdlr
HISDR1500ProtocolHdlr AP55AndDR1500HARCommand TCPPort DR1500HARResponse

cmd.getByteCommand(cmdData)

[incomplete response or exception]
false[false]

throw TCPPotocolHdlrException("bad response")

receive(initial,interChar,maxRead)

parseResponse(response)

byte[] cmdData

byte[] response

true

send(cmdData)[IO Error]
throw TCPProtocolHdlrException(IO sending)

[IO Error]
throw TCPProtocolHdlrExcpetion("IO receiv ing") byte[] response

sendSerialDataToHAR(TCPPort, AP55AndDR1500HARCommand cmd, byte[] cmdData)

Figure 5-74. HISDR1500ProtocolHdlr:sendSerialDataToHAR (Sequence Diagram)

5.6.2.14 HISDR1500ProtocoldHdlr:parseByteResponse (Sequence Diagram)

This diagram shows the processing that occurs when parsing a byte response. The response is analyzed to determine it's a

properly formatted response. After confirming the response is properly formatted, the code is compared against all known

exception codes to determine if the response is successful.

CHART R8 Detailed Design Rev 2 5-84 08/01/2011

intToAsciiBytes(DR1500_NO_RESPONSE_EXCEPTION)

byte[] dr1500NoResponseException

byte[] dashSeperatorException

byte[] commandCode

[packetLength exception]
false

[commandCode == packetLengthException]
log("Invalid response, packet length exception detected.")

HISDR1500ProtocolHdlr

This diagram shows the processing that occurs when parsing a byte response.
The response is analyzed to determine it's a properly formatted response. After
confirming the response is properly formatted, the code is compared against all known
exception codes to determine if the response is successful.

DR1500HARResponse ByteUtil Log

byte[]
CommandCode

parseResponse(byte[] response,Log logfile)

intToAsciiBytes(PACKET_LENGTH_EXCEPTION)

byte[] packetLengthException

new byte[]{response[5],response[6],response[7]}

[response[0] != SERIAL_RESPONSE_PREFIX]
log("Invalid response, no response prefix character detected")

[error]
false [response[4] != SERIAL_PACKET_LEN_SEPERATOR_CHARACTER")

log("Invalid response, no packet length seperator character detected")

[error]
false

[parameterValueException]
false

intToAsciiBytes(DASH_SEPERATOR_EXCEPTION)

[response[8] != SERIAL_COMMAND_SEPERATOR_CHARACTER]
log("Invalid response, no command seperator character detected.")

[error]
false

[colonSeperator exception]
false

[commandCode = colonSeperatorExcpetion]
log("invalid response, colon seperator exception detected")

intToAsciiBytes(PARAMETER_VALUE_EXCEPTION)

byte[] parameterValueException
[commandCode = parameterValueException]

log("invalid response, parameter value exception detected.")

true

intToAsciiBytes(COLON_SEPERATOR_EXCEPTION)

byte[] colonSeperatorException

[commandCode == dashSeperatorException]
log("invalid response, dash seperator exception detected.")

[dashSeperator exception]
false

intToAsciiBytes(COMMAND_CODE_EXCEPTION)

byte[] commandCodeException

[commandCode == commandCodeException]
log("invalid response, command code exception detected.")

[comandCode exception]
false

Figure 5-75. HISDR1500ProtocoldHdlr:parseByteResponse (Sequence Diagram)

5.6.2.15 HISDR1500Protocolhdlr:getHARVersionInformation (Sequence Diagram)

This diagram shows the processing that occurs when the DR1500 HAR version information is queried. DR1500 and DCC

CHART R8 Detailed Design Rev 2 5-85 08/01/2011

HAR version information includes software version, build, and, eprom.

sendSerialDataToHAR(ConnectedPortInfo port, GET_DCC_SOFTWARE_REVISION_AND_DATE)

This diagram shows the processing that occurs when the DR1599 HAR version information is queried.
DR1500 and DCC HAR version information includes software version, build, and, eprom.

HISDR1500ProtocolHdlr

HISDR1500ProtocolHdlr

returns byte[] response

AP55AndDR1500HARResponse ByteUtil

[fmsConnectedPort]
throw CHART2Exception("not supported")

parseHARSoftwareRevisionFromResponse(byte[] response)

getHARVersionInformation(ConnectedPortInfo port, HISDR1500HARStatus status)

[problem communicating with HAR]
HISDR1500ProtocolHdlrException(message)

[error parsing response]
HISDR1500HARProtocolHdlrException(message)

int softwareVersion

HISDR1500HARStatus status

HISDR1500HARProtocolHdlrException(message)

sendSerialDataToHAR(ConnectedPortInfo port, GET_HAR_SOFTWARE_REVISION)

asciiBytesToInt(response,versionIndex,2)

int softwareVersion

sendSerialDataToHAR(ConnectedPortInfo port, GET_HAR_SOFTWARE_BUILD)

parseHARSoftwareBuildFromResponse(byte[] response)
asciiBytesToInt(response, buildIndex,2

int softwareBuild[error parsing response]
HISDR1500HARProtocolHdlrException(message)HISDR1500HARProtocolHdlrException(message)

sendSerialDataToHAR(ConnectedPortInfo port, GET_HAR_EPROM_CHECKSUM)

parseHAREPROMChecksum(byte[] response)
asciiBytesToInt(response,epromIndex,5)

int eprom[error parsing response]
HISDR1500HARProtocolHdlrException(message)

int softwareBuild

int eprom
HISDR1500HARProtocolHdlrException(message)

new String(byte[] response)
String

Figure 5-76. HISDR1500Protocolhdlr:getHARVersionInformation (Sequence Diagram)

5.7 SHAZAM Control Module

5.7.1 Class Diagrams

5.7.1.1 SHAZAMControl (Class Diagram)

The SHAZAMControlModule serves a SHAZAMFactory object and SHAZAM objects. The class diagram below shows the

classes used to implement these system interfaces.

CHART R8 Detailed Design Rev 2 5-86 08/01/2011

uses

1

New for R8

1

AlertAndNotificationHelper

New for R8

1

SHAZAMActiveRelay

«enumeration»

1

1

1

1

1

11

SHAZAMConfigurationEventInfo

«typedef»

SHAZAMChangeModelTypeCmd

11

1

1

1

New for R8

1

BeaconState

«enumeration»

1

PortLocator

11

1

New for R8

getTCPRecvTimeoutMilliSecs

1

1

1

1

11

1

1

1

VIKINGRC2ASHAZAM

«interface»

HWGER02ASHAZAM

«interface»

HWGER02ASHAZAMImpl

VIKINGRC2ASHAZAMImpl

HWGER02AConfiguration

«typedef»

VIKINGRC2AConfiguration

«typedef»

1

1

R3B3:Added

setLocation()

R8: Added

changeModelTypeImpl()

1 1

UniquelyIdentifiable

«interface»

HARMessageNotifier

«interface»

SHAZAM

«interface»

TokenManipulator

CommEnabled

«interface»

GeoLocatable

«interface»

SharedResource

«interface»

SHAZAMStateAction

«enumeration»

SHAZAMActivateCmd SHAZAMDeactivateCmd SHAZAMPutOnlineCmd SHAZAMPutInMaintModeCmd SHAZAMTakeOfflineCmd SHAZAMSetConfigurationCmd

java.util.TimerTask

java.util.Timer

CheckForAbandonedSHAZAMTask

ServiceApplicationModule

«interface»

SharedResourceManager

«interface»

SHAZAMFactory

«interface»

SHAZAMControlModuleProperties

SHAZAMControlModule

TrafficEvent

«interface»

SHAZAMRefreshCmd

QueueableCommand

«interface»

RefreshSHAZAMTimerTask

VikingRC2AProtocolHdlr

ServiceApplication

«interface»

SHAZAMControlDB

PushEventSupplier

SHAZAMImpl

SHAZAMFactoryImpl

CommandQueue

SHAZAMConfiguration

«typedef»

SHAZAMStatus

«typedef»

1
*

SHAZAMProtocolHdlr

«interface»

1

*

* *

is in

use by

is

using

1
1

New for R8

New for R8

1

*

1

11

*

1

1

HAR

«interface»

HWGER02AProtocolHdlr

1

1

R8: changed

SHAZAMConfiguration to

SHAZAMDeviceConfig

1

1

New for R8

1

1

1

1 1

getSHAZAMRefreshTimerMins():long

getSharedResMonIntSecs():long

getSHAZAMFactoryID():byte[]

getTCPRecvTimeoutMilliSecs():int

initialize(ServiceApplication app):boolean

getVersion() : ComponentVersion

traderGroupUpdated() : void

shutdown(ServiceApplication app):boolean

ServiceApplication m_svcApp;

DefaultServiceApplicationProperties m_props;

run()

SHAZAMFactoryImpl m_factory

activateHARNotice(AccessToken, ArbQueueEntryIndicator,

 TrafficEventList, CommandStatus):void

deactivateHARNotice(AccessToken, boolean onlineFlag,

 CommandStatus):void

modifyHARNotice(AccessToken, TrafficEventList): void

isHARNoticeActive() : boolean

setAssociatedHAR(AccessToken, HAR, Identifier harID):void

getAssociatedHAR() : HAR

getDirection():DirectionValues

setDirection(Direction):void

run()

SHAZAMFactoryImpl m_factory

getResources() : SharedResourceList

getControlledResources(Identifier opCtrID) : SharedResourceList

hasControlledResources(Identifier opCtrID) : boolean

takeOffline(AccessToken, CommandStatus):void

putOnline(AccessToken, CommandStatus):void

putInMaintenanceMode(AccessToken, CommandStatus):void

getCommMode() :CommunicationMode

createSHAZAM(AccessToken,

 SHAZAMDeviceConfig) : SHAZAMInfo

getSHAZAMList():SHAZAMInfo[]

SHAZAMControlDB(DBConnectionManager)

deleteSHAZAM(Identifier):void

getSHAZAMList():SHAZAMIInfo[]

insertSHAZAM(Identifer,

 SHAZAMDeviceConfig):

 SHAZAMImpl[]

setStatus(Identifer, SHAZAMStatus,

 SHAZAMData):void

getStatus(Identifier): SHAZAMStatus

setConfiguration(Identifer,

 SHAZAMDeviceConfig):void

getConfiguration(Identifier):

 SHAZAMDeviceConfig

DBConnectionManager m_db

SHAZAM theSHAZAM

Identifier id;

SHAZAMDeviceConfig config

SHAZAMFactoryImpl(byte[] id,

 ServiceApplication serviceApp,

 SHAZAMControlDB db,

 PushEventSupplier evtRes,

 PushEventSupplier evtSHAZAM,

 RecurringTimer timer,

 long resMonIntSecs)

removeSHAZAM():void

checkForAbandonedShazams():void

refreshShazams():void

shutdown():boolean

updateSHAZAMList(byte[] id):void

java.lang.Vector m_SHAZAMList

boolean m_maintMode

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

TrafficEvent m_trafficEvent

ACTIVATE

DEACTIVATE

boolean m_maintMode

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

ONE

TWO

setConfigurationImpl(AccessToken,

 VIKINGRC2AConfiguration, CommandStatus):void

getConfigurationImpl(AccessToken

):VIKINGRC2AConfiguration

setBeaconsStateForModel(): void

VIKINGRC2AConfiguration m_config

setConfigurationImpl(AccessToken,

 HWGER02AConfiguration, CommandStatus):void

getConfigurationImpl(AccessToken

):HWGER02AConfiguration

setBeaconsStateForModel(): void

HWGER02AConfiguration m_config

SHAZAMImpl(SHAZAMFactoryImpl, SHAZAMControlDB, PushEventSupplier)

refreshSHAZAMState():void

setBeaconsState(SHAZAMStateAction, CommandStatus, boolean):boolean

handleOpStatus(OperationalStatus, CommandStatus, boolean):boolean

activateImpl(AccessToken, CommandStatus):void

deactivateImpl(AccessToken, CommandStatus):void

checkResourceConflict(AccessToken, CommandStatus):void

putInMaintenanceModeImpl(AccessToken, CommandStatus):void

putOnlineImpl(AccessToken, CommandStatus):void

refreshImpl(AccessToken, CommandStatus):void

shutdown():boolean

takeOfflineImpl(AccessToken, CommandStatus):void

setLocation(token:byte[], location:ObjectLocation):void

pollNowImpl(AccessToken, CommandStatus): void

changeModelTypeImpl(AccessToken, SHAZAMModelID,

 CommandStatus): void

+abstract setBeaconsStateForModel(): void

long m_lastRefreshTime

TrafficEvent[] m_activeTrafficEvents

SHAZAMProtocolHdlr m_protocolHdlr

PortLocator m_portLocator

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

SHAZAMConfiguration m_shazamConfig

int m_activeRelay

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

byte[] token

SHAZAMImpl m_shazam

SHAZAMModelID m_modelID

CommandStatus m_status

SHAZAMConfiguration m_shazamConfig

string m_devicePhoneNumber

string m_deviceAccessCode

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

byte[] m_token

SHAZAMImpl m_shazam

CommandStatus m_status

SHAZAMDeviceConfig m_config

byte[] token

SHAZAMImpl m_shazam

CommandStatus m_status

initiateProgramming(): void

terminateProgramming():void

activate(): void

deactivate(): void

getBeaconState(): SHAZAMState

Figure 5-77. SHAZAMControl (Class Diagram)

CHART R8 Detailed Design Rev 2 5-87 08/01/2011

5.7.1.1.1 AlertAndNotificationHelper (Class)

This helper class provides method to sends an alert and notification messages to a notification group.

5.7.1.1.2 BeaconState

The valid values for the current beacon state, as queried from the device.

5.7.1.1.3 CheckForAbandonedSHAZAMTask (Class)

The CheckForAbandonedSHAZAMTask class is responsible for detecting any SHAZAM device in maintenance mode with a

message on it which has no one logged on at the controlling operations center. This would only occur as a result of an

anomaly, such as a reboot of a user's machine, because during a normal Chart II logout attempt, the logout is prohibited by

Chart II system if the the user is the last user on his/her operations center and that operations center is controlling a

maintenance mode sign. However, because anomalies happen, this task runs periodically to look for abandoned SHAZAM

devices. This class implements the java.util.TimerTask interface, and as such it contains one method, run(), which is invoked

by Java timer object on a regularly scheduled basis. This class contains a reference to the SHAZAMFactoryImpl, which is

called upon to actually check the SHAZAM objects and controlling operations centers of each SHAZAM every time this task

is called.

5.7.1.1.4 CommandQueue (Class)

The CommandQueue class provides a queue for QueueableCommand objects. The CommandQueue has a thread that it uses

to process each QueueableCommand in a first in first out order. As each command object is pulled off the queue by the

CommandQueue's thread, the command object's execute method is called, at which time the command performs its intended

task.

5.7.1.1.5 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put online, or put in maintenance mode

through a standard interface. These states typically apply only to field devices. When a device is taken offline, it is no longer

available for use through the system and automated polling (if any) is halted. When put online, a device is again available for

use by TrafficEvents within the system and automated polling is enabled (if applicable). When put in maintenance mode a

device is offline (i.e., cannot be used by TrafficEvents), and maintenance commands appropriate for the particular type of

CHART R8 Detailed Design Rev 2 5-88 08/01/2011

device are allowed to help in troubleshooting.

5.7.1.1.6 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their users.

5.7.1.1.7 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related

information over a localized radio transmitter, making the information available to the traveler. This interface contains

methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating

and monitoring the HAR in maintenance and online modes.

5.7.1.1.8 HARMessageNotifier (Class)

The HARMessageNotifier class specifies an interface to be implemented by devices that can be used to notify the traveler to

tune in to a radio station to hear a traffic message being broadcast by a HAR. A HARMessageNotifier is directional and

allows users of the device to better determine if activation of the device is warranted for the message being broadcast by the

HAR. This interface can be implemented by SHAZAM devices and by DMS devices which are allowed to provide a

SHAZAM-like message.

5.7.1.1.9 HWGER02AConfiguration (Class)

This class contains SHAZAMConfiguration plus data that is specific to a HWG ER02a SHAZAM.

5.7.1.1.10 HWGER02AProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a HWG ER02A SHAZAM device.

5.7.1.1.11 HWGER02ASHAZAM (Class)

This interface is used to provide access to configuration data specific to the HWG ER02a SHAZAM.

5.7.1.1.12 HWGER02ASHAZAMImpl (Class)

The HWGER02ASHAZAMImpl class provides an implementation of the HWGER02ASHAZAM interface to provide access

to configuration data specific to the HWG ER02A SHAZAM.

CHART R8 Detailed Design Rev 2 5-89 08/01/2011

5.7.1.1.13 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or recurring execution.

5.7.1.1.14 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one or more times.

5.7.1.1.15 PortLocator (Class)

The PortLocator is a utility class that helps one to connect to the port used by the device. The actual implementation of the

operations is done by the derived classes depending on what protocol is used for communication.

5.7.1.1.16 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel. The user of this class can pass a

reference to the event channel factory to this object. The constructor will create a channel in the factory. The push method is

used to push data on the event channel. The push method is able to detect if the event channel or its associated objects have

crashed. When this occurs, a flag is set, causing the push method to attempt to reconnect the next time push is called. To

avoid a supplier with a heavy supply load from causing reconnect attempts to occur too frequently, a maximum reconnect

interval is used. This interval specifies the quickest reconnect interval that can be used. The push method uses this interval

and the current time to determine if a reconnect should be attempted, thus reconnects can be throttled independently of a

supplier's push rate.

5.7.1.1.17 QueueableCommand (Class)

A QueueableCommand is an interface used to represent a command that can be placed on a CommandQueue for

asynchronous execution. Derived classes implement the execute method to specify the actions taken by the command when it

is executed. This interface must be implemented by any device command in order that it may be queued on a

CommandQueue. The CommandQueue driver calls the execute method to execute a command in the queue and a call to the

interrupted method is made when a CommandQueue is shut down.

5.7.1.1.18 RefreshSHAZAMTimerTask (Class)

The RefreshSHAZAMTimerTask class is responsible for refreshing all of the SHAZAM devices. This class implements the

CHART R8 Detailed Design Rev 2 5-90 08/01/2011

java.util.TimerTask interface, and as such it contains one method, run(), which is invoked by Java timer object on a regularly

scheduled basis. This class contains a reference to the SHAZAMFactoryImpl, which is called upon to request each SHAZAM

to refresh itself (command the device to its last known status) if its refresh interval has expired, each time this task is called.

5.7.1.1.19 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a ChartII service application. These

services include providing access to basic CORBA objects that are needed by service applications, such as the ORB, POA,

Trader, and Event Service.

5.7.1.1.20 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes are notified when their host

service is initialized and when it is shutdown. The implementing class can use these notifications along with the services

provided by the invoking ServiceApplication to perform actions such as object creation and publication.

5.7.1.1.21 SharedResource (Class)

The SharedResource interface is implemented by any object that may have an operations center responsible for the disposition

of the resource while the resource is in use.

5.7.1.1.22 SharedResourceManager (Class)

The SharedResourceManager interface is implemented by classes that manage shared resources. Implementing classes must

be able to provide a list of all shared resources under their management. Implementing classes must also be able to tell others

if there are any resources under its management that are controlled by a given operations center. The shared resource manager

is also responsible for periodically monitoring its shared resources to detect if the operations center controlling a resource

doesn't have at least one user logged into the system. When this condition is detected, the shared resource manager must push

an event on the ResourceManagement event channel to notify others of this condition.

5.7.1.1.23 SHAZAM (Class)

This interface class is used to identify the common SHAZAM-specific methods which can be used to interface with a

SHAZAM field device. It specifies methods for activating and deactivating the SHAZAM in maintenance mode, refreshing

the SHAZAM (commanding the device to its last known status) and removing the SHAZAM. This interface is implemented

by a SHAZAMImpl class, which uses a helper ProtocolHdlr class to perform the model specific protocol for device command

CHART R8 Detailed Design Rev 2 5-91 08/01/2011

and control.

5.7.1.1.24 SHAZAMActivateCmd (Class)

This class contains data needed to activate a SHAZAM asynchronously via the CommandQueue. A flag is used to determine

if the activation is being performed directly on the device while it is in maintenance mode or if the activation is being

processed as an extension of setting a HAR message in response to a traffic event.

5.7.1.1.25 SHAZAMActiveRelay (Class)

The SHAZAMActiveRelay class enumerates the types of active relay of a SHAZAM: ONE or TWO.

5.7.1.1.26 SHAZAMChangeModelTypeCmd (Class)

This class is a command object used to invoke the SHAZAM change Model type processing asynchronously from the

command queue. When executed, this class calls back into the SHAZAMImpl object to execute the changeModelTypeImpl

method.

5.7.1.1.27 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device. It is used to communicate configuration

information to/from the database, and to/from the GUI clients. The GUI sends a SHAZAMConfiguration when creating a

SHAZAM or modifying the configuration of an existing SHAZAM.Device Location member has been modified for R3B3.

Now it contains a detailed location information.

5.7.1.1.28 SHAZAMConfigurationEventInfo (Class)

This class contains data (a SHAZAMDeviceConfig object) that is pushed on the SHAZAMControl CORBA event channel

with a SHAZAMConfigurationChanged or SHAZAMAdded event type.

5.7.1.1.29 SHAZAMControlDB (Class)

This class provides access to database functionality needed to support the SHAZAM and SHAZAMFactory classes. This

class provides a high level interface to allow for persistence and depersistance of SHAZAM and SHAZAMFactory objects.

CHART R8 Detailed Design Rev 2 5-92 08/01/2011

5.7.1.1.30 SHAZAMControlModule (Class)

This class is a service module that provides control of SHAZAM devices. Upon initialization the module initializes a

SHAZAMFactory which contains SHAZAM objects that have been previously added to the system. These objects are

accessed via the CORBA ORB and manipulated directly from client applications. The module also creates support objects

that are used by the SHAZAM (and SHAZAMFactory) objects to perform their processing, such as a database connection,

event channels, and a periodic timer used to allow the objects to perform timer based processing.

5.7.1.1.31 SHAZAMControlModuleProperties (Class)

This class is used to provide access to properties used by the SHAZAM Control Module. This class wraps properties that are

passed to it upon construction. It adds its own defaults and provides methods to extract properties specific to the SHAZAM

Control Module.

5.7.1.1.32 SHAZAMDeactivateCmd (Class)

This class contains data needed to deactivate a SHAZAM asynchronously via the CommandQueue. A flag is used to

determine if the deactivation is being performed directly on the device while it is in maintenance mode or if the deactivation is

being processed as an extension of setting a HAR message in response to a traffic event.

5.7.1.1.33 SHAZAMFactory (Class)

The SHAZAMFactory class specifies the interface to be used to create SHAZAM objects within the Chart II system. It also

provides a method to get a list of SHAZAM devices currently in the system.

5.7.1.1.34 SHAZAMFactoryImpl (Class)

This class provides the ability to add new SHAZAM objects to the system. When SHAZAMs are added, they are persisted to

the database so this object can depersist them upon startup. This class also provides a removeSHAZAM method that allows a

SHAZAM to remove itself from the system when directed. This class is also responsible for performing the checks requested

by the timer tasks: to refresh the SHAZAM devices and to look for SHAZAM devices with no one logged in at the

controlling operations center.

5.7.1.1.35 SHAZAMImpl (Class)

The SHAZAMImpl class provides an implementation of the SHAZAM interface, and by extension the SharedResource,

HARMessageNotifier, CommEnabled, GeoLocatable, and UniquelyIdentifiable interfaces as specified by the IDL.

CHART R8 Detailed Design Rev 2 5-93 08/01/2011

This class contains a CommandQueue object that is used to sequentially execute long running operations (field

communications to the device) in a thread separate from the CORBA request threads, thus allowing quick initial responses.

Also contained in this class are SHAZAMConfiguration and SHAZAMStatus objects (used to store the configuration and

status of the sign), a lastRefreshTime value used for refreshing (commanding the device to its last known status), and a list of

TrafficEvent objects that are currently active on the SHAZAM.

The SHAZAMImpl contains *Impl methods that map to methods specified in the IDL, including requests to activate and

deactivate the SHAZAM, put the SHAZAM online, put the SHAZAM offline, put the SHAZAM in maintenance mode, or to

change (set) the configuration of the SHAZAM. All of these requests require (or potentially require) field communications to

the device, so each request is stored in a specific subclass of QueueableCommand and added to the CommandQueue. The

queueable command objects simply call the appropriate SHAZAMImpl method as the command is executed by the

CommandQueue in its thread of execution.

The SHAZAMImpl also contains methods called by the SHAZAMFactory to support the timer tasks of the SHAZAM

Service: to refresh the SHAZAM devices and to look for maintenance mode SHAZAM devices with no one logged in at the

controlling operations center.

5.7.1.1.36 SHAZAMProtocolHdlr (Class)

This interface is used to provide methods for communicating with a SHAZAM device.

5.7.1.1.37 SHAZAMPutInMaintModeCmd (Class)

This command contains data needed to put a SHAZAM device in maintenance mode (from either offline or online mode)

asynchronously via the CommandQueue. When executed this class calls back into the SHAZAMImpl object to execute the

putInMaintenanceModeImpl method.

5.7.1.1.38 SHAZAMPutOnlineCmd (Class)

This command contains data needed to put a SHAZAM device online (from maintenance or offline mode) asynchronously via

the CommandQueue. When executed this class calls back into the SHAZAMImpl object to execute its putOnLineImpl

method.

CHART R8 Detailed Design Rev 2 5-94 08/01/2011

5.7.1.1.39 SHAZAMRefreshCmd (Class)

This class is a command object used to invoke the SHAZAM refresh processing (commanding the device to its last known

status) asynchronously from the command queue. When executed, this class calls back into the SHAZAMImpl object to

execute the refreshImpl method.

5.7.1.1.40 SHAZAMSate (Class)

The SHAZAMSate class enumerates the types of the state of the SHAZAM ACTIVATED, DEACTIVATED and

UNKNOWN.

5.7.1.1.41 SHAZAMSetConfigurationCmd (Class)

This command contains data needed to set the SHAZAM configuration asynchronously via the CommandQueue. When

executed, this class calls back into the SHAZAMImpl object to execute its setConfigurationImpl method. The SHAZAM

device model currently in use does not contain any configuration settings, however this command is still processed

asynchronously for consistency.

5.7.1.1.42 SHAZAMStateAction (Class)

The SHAZAMStateAction class enumerates the types of actions (commands) that set the state of a SHAZAM: ACTIVATE

or DEACTIVATE.

5.7.1.1.43 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device. This class is used to store status within the SHAZAM object, and

is also used to communicate configuration information to/from the database, and to the GUI clients (one-way).

5.7.1.1.44 SHAZAMTakeOfflineCmd (Class)

This command contains data needed to take a SHAZAM device offline (from online or maintenance mode) asynchronously

via the CommandQueue. When executed, this class calls back into the SHAZAMImpl object to execute its takeOfflineImpl

method.

CHART R8 Detailed Design Rev 2 5-95 08/01/2011

5.7.1.1.45 TokenManipulator (Class)

This class contains all functionality required for user rights in the system. It is the only code in the system which knows how

to create, modify and check a user's functional rights. It encapsulates the contents of an octet sequence which will be passed

to every secure method. Secure methods should call the checkAccess method to validate the user. Client processes should

use the check access method to verify access and optimize to reduce the size of the sequence to only those rights which are

necessary to invoke the secure method. The token contains the following information. Token version, Token ID, Token Time

Stamp, Username, Op Center ID, Op Center IOR, functional rights

5.7.1.1.46 TrafficEvent (Class)

Objects of this type represent traffic events that require action from system operators.

5.7.1.1.47 UniquelyIdentifiable (Class)

This interface will be implemented by all classes which are to be identifiable within the system. The identifier must be

generated by the IdentifierGenerator to ensure uniqueness.

5.7.1.1.48 VIKINGRC2AConfiguration (Class)

This class contains SHAZAMConfiguration plus data that is specific to a Viking RC2A SHAZAM.

5.7.1.1.49 VikingRC2AProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Viking RC2A SHAZAM device.

5.7.1.1.50 VIKINGRC2ASHAZAM (Class)

This interface is used to provide access to configuration data specific to the Viking RC2A SHAZAM.

5.7.1.1.51 VIKINGRC2ASHAZAMImpl (Class)

The VIKINGPC2ASHAZAMImpl class provides an implementation of the VIKINGRC2ASHAZAM interface to provide access to

configuration data specific to the Viking RC2A SHAZAM.

CHART R8 Detailed Design Rev 2 5-96 08/01/2011

5.7.2 Sequence Diagrams

5.7.2.1 SHAZAMControlModule:RefreshSHAZAMInBackground (Sequence Diagram)

This diagram shows the processing that is used to refresh/poll SHAZAMs periodically. When the SHAZAMControlModule

is initialized it creates a timer and timer task and then schedules the timer task to fire periodically. The interval at which the

timer task fires is set in the SHAZAM service's properties file, and generally needs to be set lower than the typical refresh rate

of a SHAZAM, for the timer interval is the minimum rate at which SHAZAMs will be refreshed/polled. When the timer fires,

the SHAZAMFactoryImpl is called and it iterates through all of its SHAZAMImpl objects and calls the

refreshSHAZAMState() method in each SHAZAMImpl. The SHAZAMImpl makes several checks to determine if the

SHAZAM needs to be refreshed. If the SHAZAM is not online or auto-refresh is not enabled, the SHAZAMImpl returns

without doing a refresh. The last SHAZAM contact time and last SHAZAM refresh attempt time are checked to see if the

SHAZAM's refresh interval has elapsed without either contacting the SHAZAM or attempting to refresh it. If the interval has

not elapsed, the SHAZAMImpl returns without performing a refresh. If it is determined a refresh should be done, a

SHAZAMRefreshCmd is created and added to the SHAZAM's command queue, where it will be executed asynchronously.

See the refreshImpl sequence diagrams for details.

CHART R8 Detailed Design Rev 2 5-97 08/01/2011

See refreshImpl
sequence diagram
for details.

Only processing in initialize() that is pertinent to refreshing SHAZAMs is shown.

The frequency at which
the timer task is set to fire
fires is set in the SHAZAM
service properties file.

The following happens asynchronously on the interval as specified in the schedule method above.

CommandQueue

The following happens asynchronously when the SHAZAMRefreshCmd gets to the head of the CommandQueue.

create

schedule(RefreshSHAZAMTimerTask, 0, delaySeconds * 1000)

run
refreshSHAZAMObjects()

[last auto refresh attempted more recently than refresh interval]

addCommand(SHAZAMRefreshCmd)

execute()
refreshImpl()

SHAZAM Service

RefreshSHAZAMTimerTask

SHAZAMImpl

SHAZAMRefreshCmd

create

refreshSHAZAMState()

initialize()

[SHAZAM not online]

[contacted more recently than refresh interval]

SHAZAMControlModule

java.util.Timer

SHAZAMFactoryImpl

[*for each SHAZAM]

create

[refresh not enabled]

Figure 5-78. SHAZAMControlModule:RefreshSHAZAMInBackground (Sequence Diagram)

5.7.2.2 SHAZAMControlModule:changeModelType (Sequence Diagram)

A user with the proper functional rights can modifies the model type of the SHAZAM. The SHAZAM must be offline to

change its model type. The SHAZAM must be offline to change its model type. If newModelID matches the current modelID,

the cmdStat will be completed with success, with text indicating the model type matches, and no event will be pushed.

If the new model type is indeed different, depending on the old and new model types, this operation may have to be

CHART R8 Detailed Design Rev 2 5-98 08/01/2011

implemented by deleting the old SHAZAM servant object and instantiating a new one. This will change the CORBA

reference of the device, even though it will maintain the same ID. In these cases, the old SHAZAM will be deactivated and

withdrawn from the Trader, and the new SHAZAM will then be published to the Trader and activated. In all cases, regardless

of whether a new servant had to be created, a SHAZAMModelChanged event will be pushed, specifying the new (or the

same) CORBA reference for the SHAZAM as it now exists. The current configuration of the SHAZAM matching the new

SHAZAM Model type will also be included in the event. The new SHAZAM will have the same CHART ID as the SHAZAM

this operation is invoked on.

activate object
[activate object]

log

register object
[register object]

log

ServiceApplication

createSHAZAM

Deactivating old SHAZAM

[Deactivating old SHAZAM]
log

deactivate_object(ID)

POA

[NewModelID == currModelID] [NewModelID == currModelID]
log

SHAZAMFactoryImpl

CommandQueue
executes commands
asynchronously.

[success]
push(SHAZAMModelChanged)

ORB

SHAZAMImpl CommandQueue SHAZAMControlDB PushEventSupplier OperationsLogCommandStatus

SHAZAMChangeModelTypeCmd

changeModelType()
[improper rights]

completed

[improper rights]
log[improper rights]

AccessDenied [not offline]]
completed

[not offline]
log

create

update

addCommand

execute

changeModelTypeImpl

Update the cached reference
that uses this SHAZAM as a notifier.

updateAssociatedHARRef

[not offline]

return

updateSHAZAMList
updateConfig()

remove from trader

activate_object

registerObject

remove from trader

[remove from trader]
log

Figure 5-79. SHAZAMControlModule:changeModelType (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-99 08/01/2011

5.7.2.3 SHAZAMControlModule:createSHAZAM (Sequence Diagram)

A user with the proper functional rights can add a SHAZAM to the system. The SHAZAM configuration data is added to the

database, and an appropriate SHAZAMImpl object is created. Upon creation, SHAZAMImpl creates an appropriate

ProtocolHdlr and a CommandQueue. The SHAZAMImpl object is connected to the POA, making it ready for calls from

clients. The Service Application is called to register the object with the trader and an event is pushed on the status event

channel to allow GUIs to show this SHAZAM as an available object in the system. The SHAZAM is added in the offline

state and no field communications are necessary.

HWGER02ASHAZAMImpl

HWGER02AProtocolHdlr

CommandQueue

create

create

[ModelID == SHAZAM_HWG_ER02A]

create

[ModelID == SHAZAM_VIKING_RC2A]

create

SHAZAMFactoryImpl
ORB

VIKINGRC2ASHAZAMImpl

SHAZAMControlDB POA ServiceApplication PushEventSupplier

SHAZAM is created
in OFFLINE mode.

CommandQueue

VikingRC2AProtocolHdlr

OperationsLog

create

log

[improper rights]
log

createSHAZAM

[improper rights]
AccessDenied

insertSHAZAM

[failure]
CHART2Exception

activate_object

registerObject

push(SHAZAMAdded)

create

Figure 5-80. SHAZAMControlModule:createSHAZAM (Sequence Diagram)

5.7.2.4 SHAZAMControlModule:getConfiguration (Sequence Diagram)

A user with appropriate privileges can get the current configuration of the SHAZAM. When a request is made for the current

CHART R8 Detailed Design Rev 2 5-100 08/01/2011

configuration of the SHAZAM, the specific (Viking or HWGER02A) SHAZAMConfiguration object is returned.

ORB

SHAZAMImpl SHAZAMConfiguration

checkAccess

[no rights]
AccessDenied

copy

VikingRC2A
 or HWGER02A

OperationsLogTokenManipulator

getConfiguration()

[no rights]
 log

synchronize

end synchronize

SHAZAMConfiguration

[get configuration]
log

Figure 5-81. SHAZAMControlModule:getConfiguration (Sequence Diagram)

5.7.2.5 SHAZAMControlModule:getStatus (Sequence Diagram)

A user with appropriate privileges can get the current status of the SHAZAM. When a request is made for the current status

of the SHAZAM, the SHAZAM's SHAZAMStatus object is returned.

CHART R8 Detailed Design Rev 2 5-101 08/01/2011

checkControllingOpCenterName()

ORB

SHAZAMImpl SHAZAMStatus OperationsLog

getStatus()

synchronize

copy

end synchronize

[get status]
log

SHAZAMStatus

Figure 5-82. SHAZAMControlModule:getStatus (Sequence Diagram)

5.7.2.6 SHAZAMControlModule:handleOpStatus (Sequence Diagram)

This sequence diagram shows how a SHAZAMImpl handles the task of detecting and responding to changes in its operational

status. A SHAZAM's operational status is normally "OK", but it can be "COMM_FAILURE" when the

SHAZAMProtocolHndlr reports that it cannot communicate with the device, or HARDWARE_FAILURE when relay state

does not match with a CHART state.

This method is called after every attempt to communicate with the device. Processing falls into one of two cases, depending

on the operational status reported.

If the operational status is now being reported OK, the last contact time in m_status (a SHAZAMStatus object) is updated

with the current time. (The last contact time is used to determine when to refresh [see runRefreshSHAZAMTask].) If the

operational status of the device was already OK, there is no change in operational status and there is nothing else to do except

CHART R8 Detailed Design Rev 2 5-102 08/01/2011

return false (false indicates no change in operational status). If the status has just become OK, the operational status in

m_status is updated to OK, the status change time in m_status is updated to the current time, and the new SHAZAMStatus is

persisted and pushed out into the status event channel. The command status is then updated or completed depending on the

complete flag. This method then returns true indicating that the operational status has changed.

If the operational status is now being reported COMM_FAILURE and the device was already in COMM_FAILURE, there is

no change in operational status and there is nothing else to do except return false (false indicates no change in operational

status). If the status has just become COMM_FAILURE, the operational status in m_status is updated to COMM_FAILURE,

the status change time in m_status is updated to the current time, and the new SHAZAMStatus is persisted and pushed out

into the status event channel. The command status is then updated or completed depending on the complete flag. This

method then returns true indicating that the operational status has changed.

If the operational status is now being reported HARDWARE_FAILURE and the device was already in

HARDWARE_FAILURE, there is no change in operational status and there is nothing else to do except return false (false

indicates no change in operational status). If the status has just become HARDWARE_FAILURE, the operational status in

m_status is updated to HARDWARE_FAILURE, the status change time in m_status is updated to the current time, and the

new SHAZAMStatus is persisted and pushed out into the status event channel. The command status is then updated or

completed depending on the complete flag. This method then returns true indicating that the operational status has changed.

CHART R8 Detailed Design Rev 2 5-103 08/01/2011

notifyAndAlert(DeviceAlertAndNotificatio,
m_status.m_opStatus, opStatus, systemToken,

DeviceFailureDeviceType, getID())

AlertAndNotificationHelper

notifyAndAlert(DeviceAlertAndNotificatio,
m_status.m_opStatus, opStatus, systemToken,

DeviceFailureDeviceType, getID())

notifyAndAlert(DeviceAlertAndNotificatio,
m_status.m_opStatus, opStatus, systemToken,

DeviceFailureDeviceType, getID())

If opStatus == OK

m_status:
SHAZAMStatus

Bad status has been handled previously.
No need to do anything more.

setStatus

[m_status.m_opStatus == COMM_FAILURE]
false

setOpStatus(COMM_FAILURE)

push(CurrentSHAZAMStatus)

[complete is true]
update("SHAZAM just CommFailed")

[complete is true]
complete("SHAZAM now OK")

setLastContactTime(now)

push(CurrentSHAZAMStatus)

setOpStatus(OK)

setStatusChangeTime(now)

[complete is false]
update("SHAZAM now OK")

[complete is false]
update("SHAZAM just CommFailed")

setStatus

setStatusChangeTime(now)

[complete is false]
update("SHAZAM just HW Failed"

true

true

true

[m_status.m_opStatus == OK]
false

handleOpStatus(opStatus, cmdStatus,
complete)

if opStatus == HARDWARE_FAILURE

HARDWARE_FAILURE status
has handled previously.
No need to do anything more.

m_status.m_opStatus == HARDWARE_FAILURE]
false

setOpStatus(HARDWARE_FAILURE)

setStatusChangeTime(now)

setStatus

push(CurrentSHAZAMStatus)

[complete is true]
update("SHAZAM just HW Failed"

cmdStatus:
CommandStatus SHAZAMControlDBPushEventSupplier

Normal case,
opStatus OK and unchanged

If opStatus == COMM_FAILURE

SHAZAMImpl SHAZAMImpl

Figure 5-83. SHAZAMControlModule:handleOpStatus (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-104 08/01/2011

5.7.2.7 SHAZAMControlModule:refreshImpl (Sequence Diagram)

This sequence diagram shows how a SHAZAMImpl handles the refresh task. It checks to make sure the SHAZAM is not

offline and there is no resource conflict, then calls its setBeaconState() method with the desired state set to the current state as

indicated in the status. See the setBeaconState sequence diagram for details.

See setBeaconState sequence diagram for details.

[offline]
update cmd status and return

[resource conflict]
update cmd status and return

get current state as
indicated in status object

setBeaconState(currentState)

updateLastAttemptedRefreshTime()

SHAZAMRefreshCmd

SHAZAMImpl

refreshImpl(token, cmdStatus)

Figure 5-84. SHAZAMControlModule:refreshImpl (Sequence Diagram)

5.7.2.8 SHAZAMControlModule:setBeaconStateForModel_HWGER02A (Sequence Diagram)

This sequence diagram shows HWGER02A model specific sequence to set the beacon state. It sends the activate or

deactivate SHAZAM command to the device via the protocol handler. Any exception thrown from the protocol handler

(which will occur if there is no response from the device or if the response from the device is not valid) will be allowed to fly

out of this method to the caller and can be treated as a communication failure.

CHART R8 Detailed Design Rev 2 5-105 08/01/2011

[no reponse or invalid response from device]

SHAZAMProtocolHandlerException

[SHAZAMStateAction.DEACTIVATE]

deactivate

[no response or invalid response from device]

SHAZAMProtocolHandlerException

SHAZAMImpl

(setBeaconsState)

HWGER02ASHAZAMImpl HWGER02AProtocolHdlr

setBeaconStateForModel()

[SHAZAMStateAction.ACTIVATE]

activate

Figure 5-85. SHAZAMControlModule:setBeaconStateForModel_HWGER02A (Sequence Diagram)

5.7.2.9 SHAZAMControlModule:setBeaconStateForModel_VikingRC2A (Sequence Diagram)

This sequence diagram shows the VikingRC2A model specific sequence to activate or deactivate the SHAZAM beacons. The

Viking RC2A does not provide any confirmations that commands succeeded, so the initiate and activate/deactivate commands

are issued twice to increase the chance of success. If any attempt to send DTMF tones to the device fails, a protocol handler

exception will be thrown by the protocol handler and this method will let that exception fly out of this method to the caller.

Any such exception can be treated as a communications failure for this device.

CHART R8 Detailed Design Rev 2 5-106 08/01/2011

[error sending tones]

SHAZAMProtocolHandlerException

[SHAZAMStateAction.DEACTIVATE]

deactivate

[error sending tones]

SHAZAMProtocolHandlerException

sleep

[error sending tones]

SHAZAMProtocolHandlerException

setBeaconForModel()

Initiate programming

(send access code).

Do twice to increase

odds of success.

initiateProgramming()

sleep

initiateProgramming()

sleep

[SHAZAMStateAction.ACTIVATE]

activate

sleep

[SHAZAMStateAction.ACTIVATE]

activate

[error sending tones]

SHAZAMProtocolHandlerException

VIKINGRC2ASHAZAM

[error sending tones]

SHAZAMProtocolHandlerException

[error sending tones]

SHAZAMProtocolHandlerException

[error sending tones]

SHAZAMProtocolHandlerException

[error sending tones]

SHAZAMProtocolHandlerException

[error sending tones]

SHAZAMProtocolHandlerException

Perform specified action.

Do twice to increase

odds of success.

SHAZMImp

(setBeaconsState)

VikingRC2AProtocolHdl

[error sending tones]

SHAZAMProtocolHandlerException

[SHAZAMStateAction.DEACTIVATE]

deactivate

terminateProgramming

Figure 5-86. SHAZAMControlModule:setBeaconStateForModel_VikingRC2A (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-107 08/01/2011

5.7.2.10 SHAZAMControlModule:setBeaconsState (Sequence Diagram)

This sequence diagram shows how a SHAZAMImpl object activates or deactivates a SHAZAM. This method is called from

several methods in the SHAZAM service. A port is obtained from the PortLocator object and a call is made to the abstract

setBeaconStateForModel() method which is implemented by the derived model specific class. The model specific method sends a

request to either activate or deactivate via the protocol handler. If the model specific method has indicated a status of OK, a call is

made to the protocol handler to retrieve the current beacon state from the device. If the model does not support this, the protocol

handler will return Unknown, however if the model does support querying the status the returned state is compared against the

commanded state and a mismatch will result in the SHAZAM status being set to hardware failed. A call is made to the helper

method handleOpStatus to deal with the case where the operational status has changed, including initiating alerts and/or

notifications as needed. The new state is stored and the SHAZAMStatus is persisted and pushed out into the status event channel.

The command status is either updated or completed based on a flag passed into this method.

CHART R8 Detailed Design Rev 2 5-108 08/01/2011

[SHAZAMProtocolHandlerException]

set status = comm failed]

[SHAZAMState ==

UNKNOWN]

SHAZAMImpl

SHAZAMImpl CommandStatus PortLocator SHAZAMProtocolHndlr

Abstract method overridden

for specific model.

See

setBeaconStateForModel SD for more details

SHAZAMControlDB

HWGER02AProtocolHdlr will

implement the method, while

VikingRC2AProtocolHdlr

will always return 'UNKNOWN'.

PushEventSupplier OperationsLog

[complete flag true]

completed

getConnectedPort

[failure]

false

setBeaconsStateForModel()

log

getBeaconsState()

[complete flag false]

update

setBeaconsState(action,

 cmdStat,complete)

[failure]

[failure]

handleOpStatus(result,null, false)

handleOpStatus(OpStatus,cmdStatus, true)

SHAZAMState

[SHAZAMState !=

commanded state]

status = HARDWARE_FAILED

Figure 5-87. SHAZAMControlModule:setBeaconsState (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-109 08/01/2011

5.7.2.11 SHAZAMControlModule:setConfiguration (Sequence Diagram)

A user with appropriate functional rights can set the configuration of a SHAZAM (VIKINGRC2A or HWGER02A) if it is in

maintenance mode. Although this command does not currently require field communications, the asynchronous command

pattern is used for consistency with other device commands and also to allow the code to easily adapt to a device type that

supports configurable settings. When the command is executed, setConfigurationImpl stores configuration in memory. If it is

communication parameters that have changed, a new PortLocator is created based on the modal. The new configuration is

persisted to the database and an event is pushed onto the status event channel to notify others of the changes.

VIKINGRC2ASHAZAMImpl
or
HWGER02ASHAZAMImpl

DeviceAlertAndNotification

create()

R8:
create the appropriate
PortLocator based on
 model type.

R3B3:set everything in config
except device location

R8: set appropriet config based
on model type

OperationsLogSHAZAMControlDB PushEventSupplier

SHAZAMSetConfigurationCmd

CommandStatus

CommandQueue executes
command asynchronously.

SHAZAMDeviceConfig PortLocator

PortLocator

ORB

SHAZAMImpl

CommandQueue

execute

log

[improper rights]
log

[not in maint mode]
push(currentStatus)

[op ctr not equal caller's
 and no override]

[op ctr not equal caller's
 and no override]

setConfigurationImpl

update("setting configuration")

push(SHAZAMConfigurationChanged)

completed

setConfiguration

[op ctr not equal caller's and no override]
completed[op ctr not equal

caller's and no override]
ResourceControlConflict

[not in maint mode]
completed

[not in maint mode]
[not in maint mode]

[no change to existing configuration]
completed

[no change to
existing configuration] [no change to

existing configuration]

synchronized

set data as requested

end synchronize

[comm param(s) change]
delete

[comm params(s) change]
create

setConfiguration

[improper rights]
AccessDenied

[not in maint mode]
InvalidStateException

[improper rights]
completed

[not in maint mode]
completed

create

update

addCommand

Figure 5-88. SHAZAMControlModule:setConfiguration (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-110 08/01/2011

5.7.2.12 SHAZAMControlModule:updateNow (Sequence Diagram)

A user with appropriate functional rights can refresh SHAZAM now instead of waiting for the normal refresh cycle. This

operation executes asynchronously. It returns to the caller after queuing the command for execution. A CommandStatus

object may be used if the caller wishes to track the progress of the operation. After the beacon is contacted, a

CurrentSHAZAMStatus type of SHAZAMEvent will be pushed through the event service SHAZAM channel.

update

PushEventSupplierCommandQueue

updateNow(AccessToken, CommandStatus)

[improper rights]
AccessDenied

[improper rights]
log

[improper rights]
completed

[op ctr not equal caller's and no override]
completed

ORB

OperationsLog

addCommand()

CommandQueue executes
command asynchronously.

create SHAZAMRefreshCmd

refreshImpll()

execute

[not in maint mode]
InvalidStateException

[not in maint mode]
completed

[op ctr not equal
caller's and no override]
ResourceControlConflict

SHAZAMImpl CommandStatus

[not in maint mode]
push(currentStatus)

Figure 5-89. SHAZAMControlModule:updateNow (Sequence Diagram)

5.7.2.13 SHAZAMControlModule:remove (Sequence Diagram)

A user with the proper functional rights can remove an offline SHAZAM from the system. An token is generated using the

TokenManipulator and the associated HAR (if there is one) is notified that the SHAZAM is to be removed. The SHAZAM

object is withdrawn from the trader and disconnected from the ORB. The data for the SHAZAM is deleted from the database,

including data that exists for the SHAZAM in the OBJECT_LOCATION and DEVICE_ALERT_NOTIFICATION tables. A

message is pushed to the status event channel to allow the GUIs to remove the SHAZAM, and the command queue is shut

down.

CHART R8 Detailed Design Rev 2 5-111 08/01/2011

New for R8:

Remove row from

DEVICE_ALERT_NOTIFICATION

while removing SHAZAM from DB

CommandQueueSHAZAMFactoryImpl SHAZAMControlDB PushEventSupplierCosTrading.Register

remove

removeSHAZAM

deactivate_object

push(SHAZAMRemoved)

POASHAZAMImpl

ORB

HAR

deleteSHAZAM

withdraw

log

msgNotifierRemoved(token, deviceId)

[not offline]

push(currentStatus)

[not found]

Chart2Exception

shutdown

TokenManipulatorOperationsLog

shutdown

createToken

[not offline]

InvalidStateException

[improper rights]

log

[not found]

Chart2Exception

[improper rights]

AccessDenied

Figure 5-90 SHAZAMControlModule:remove (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-112 08/01/2011

5.8 SHAZAM Protocols

5.8.1 Class Diagrams

5.8.1.1 SHAZAMProtocolsPkg (Class Diagram)

This class diagram shows the protocol handlers classes that are related to SHAZAM control.

TCPIPPort

1
HWGER02AProtocolHdlr

1

SHAZAMProtocolException
«exception»

VikingRC2AProtocolHdlr

1

VoicePort
«interface»

1

SHAZAMProtocolHdlr
«interface»

initiateProgramming(): void
terminateProgramming():void
activate(): void
deactivate(): void
getBeaconState(): void

TCPIPPort m_port

initiateProgramming(): void
terminateProgramming():void
activate(): void
deactivate(): void
getBeaconState(): SHAZAMState

initiateProgramming(): void
terminateProgramming():void
activate(): void
deactivate(): void
getBeaconState(): void

VoicePort m_port

string reason

Figure 5-91. SHAZAMProtocolsPkg (Class Diagram)

5.8.1.1.1 HWGER02AProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a HWG ER02A SHAZAM device.

5.8.1.1.2 SHAZAMProtocolException (Class)

This class represents an exception that is thrown by SHAZAM protocol classes when an unexpected error is encountered.

CHART R8 Detailed Design Rev 2 5-113 08/01/2011

5.8.1.1.3 SHAZAMProtocolHdlr (Class)

This interface is used to provide methods for communicating with a SHAZAM device.

5.8.1.1.4 TCPIPPort (Class)

This class provides access to a TCP/IP port for device communications.

5.8.1.1.5 VikingRC2AProtocolHdlr (Class)

This protocol handler contains the protocol used to communicate with a Viking RC2A SHAZAM device.

5.8.1.1.6 VoicePort (Class)

A voice port provides access to a port on a telephony board. It provides methods to connect it to a destination phone number

and perform send and receive operations while connected that result in DTMF or voice being sent across the telephone

connection to or from the device.

CHART R8 Detailed Design Rev 2 5-114 08/01/2011

5.9 chartlite.data.har

5.9.1 Class Diagrams

5.9.1.1 GUIHARDataClasses (Class Diagram)

This diagram shows classes used to store HAR related data in the GUI cache. New for R3B3 is the WebObjectLocation

which is available in a WebHARConfig.

WebObjectLocation

New for R3B3

1

1

WebHISDR1500HAR WebHISDR1500HARConfig

SyncHAR

«interface»

ISSAP55HAR

«interface»

SynchronizableHAR

«interface»

HISDR1500HAR

«interface»

ISSAP55HARConfig

«typedef»

SyncHARConfig

«typedef»

SynchronizableHARConfig

«typedef»

HISDR1500HARConfig

«typedef»
11

1

1

*

1

1 1

1

1

1

1

1

1

1

1 1

1

1

1

WebISSAP55HARConfig

11
11

1

1

1 1

1

1

1

1

11

11

11

WebHAR WebHARConfig

HARConfig

«typedef»

HARStatus

«typedef»

HAR

«interface»

WebArbQueue

WebHARFactory

HARFactory

«interface»

WebSynchronizableHAR WebSynchronizableHARConfig

WebSyncHAR WebSyncHARConfig

WebISSAP55HAR

WebObjectLocationSupporter

«interface»

getWebConfig():WebHARConfig
updateLocation(loc:ObjectLocation):void

getObjectLocation():WebObjectLocation

Figure 5-92. GUIHARDataClasses (Class Diagram)

CHART R8 Detailed Design Rev 2 5-115 08/01/2011

5.9.1.1.1 HAR (Class)

This class is used to represent a Highway Advisory Radio (HAR) device. A HAR is used to broadcast traffic related

information over a localized radio transmitter, making the information available to the traveler. This interface contains

methods for getting and setting configuration, getting status, changing communications modes of a HAR, and manipulating

and monitoring the HAR in maintenance and online modes.

5.9.1.1.2 HARConfig (Class)

This class holds data pertaining to a HAR device's configuration.

5.9.1.1.3 HARFactory (Class)

This CORBA interface allows new HAR objects to be added to the system. It also allows a requester to acquire a list of HAR

objects under the domain of the specific HARFactory object.

5.9.1.1.4 HARStatus (Class)

This class (struct) contains data that indicates the current status of a HAR device. The data contained in this class is that

status information which can be transmitted from the HAR to the client as necessary. This struct is also used to within the

HAR Service to transmit data to/from the HARControlDB database interface class. (The HAR implementation also contains

other private status data elements which are not elements of this class.)

5.9.1.1.5 HISDR1500HAR (Class)

This interface is implemented by objects that provide for the control of an HIS model DR1500 HAR.

5.9.1.1.6 HISDR1500HARConfig (Class)

This class holds configuration data for an HIS model DR1500 HAR.

5.9.1.1.7 ISSAP55HAR (Class)

This CORBA interface is implemented by objects that provide for the control of an ISS model AP55 HAR.

CHART R8 Detailed Design Rev 2 5-116 08/01/2011

5.9.1.1.8 ISSAP55HARConfig (Class)

This class holds configuration data for an ISS model AP55 HAR

5.9.1.1.9 SyncHAR (Class)

This class is used to represent a synchronized Highway Advisory Radio (HAR) device. A synchronized HAR can have

constituent HARs that it operates in a synchronized mode, allowing a continuous message to be delivered to the motorist as

they travel out of range of one HAR and into the range of another.

5.9.1.1.10 SyncHARConfig (Class)

This class holds configuration data for a synchronized HAR.

5.9.1.1.11 SynchronizableHAR (Class)

This CORBA interface is implemented by objects that allow for control of HAR devices which can become constituents of a

SyncHAR.

5.9.1.1.12 SynchronizableHARConfig (Class)

This class holds configuration for a HAR that can operate in a synchronized mode.

5.9.1.1.13 WebArbQueue (Class)

This class is a GUI wrapper for a CORBA ArbitrationQueue object.

5.9.1.1.14 WebHAR (Class)

This class is a GUI wrapper for a CORBA HAR object.

5.9.1.1.15 WebHARConfig (Class)

This class is a wrapper for a HARConfig object.

5.9.1.1.16 WebHARFactory (Class)

This class is a wrapper for a HARFactory used to store data pertaining to the HAR factory in the GUI cache.

CHART R8 Detailed Design Rev 2 5-117 08/01/2011

5.9.1.1.17 WebHISDR1500HAR (Class)

This class is a GUI wrapper for a HISDR1500HAR CORBA object.

5.9.1.1.18 WebHISDR1500HARConfig (Class)

This class is a wrapper for a HISDR1500HARConfig object.

5.9.1.1.19 WebISSAP55HAR (Class)

This class is a GUI wrapper for a ISSAP55HAR CORBA object.

5.9.1.1.20 WebISSAP55HARConfig (Class)

This class is a wrapper for an ISSAP55HARConfig object.

5.9.1.1.21 WebObjectLocation (Class)

This class provides access to the ObjectLocation struct which contains information about the location of an object in the

system.

5.9.1.1.22 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the WebObjectLocation wrapper class.

5.9.1.1.23 WebSyncHAR (Class)

This class is a GUI wrapper for a SyncHAR CORBA object.

5.9.1.1.24 WebSyncHARConfig (Class)

This class is a wrapper for a SyncHARConfig object.

5.9.1.1.25 WebSynchronizableHAR (Class)

This class is a GUI wrapper for a SynchronizableHAR CORBA object.

CHART R8 Detailed Design Rev 2 5-118 08/01/2011

5.9.1.1.26 WebSynchronizableHARConfig (Class)

This class is a wrapper for a SynchronizableHARConfig object.

CHART R8 Detailed Design Rev 2 5-119 08/01/2011

5.10 chartlite.data.shazam

5.10.1 Class Diagrams

5.10.1.1 GUIShazamClasses (Class Diagram)

This diagram shows classes related to SHAZAMs that are used to store data pertaining to SHAZAMs in the GUI object cache.

SHAZAMPushConsumer

PushConsumerPOA

Updated in R8:

handleSHAZAMAdded will change to support
constructing the proper subclass of WebSHAZAM

Added handleSHAZAMModelChange()

New for R8:
getSHAZAMDeviceConfig is
abstract. Implemented in
subclasses to create
union specific to the model.

Changed for R8:
added createWebSHAZAM()

WebSHAZAMFactory

1

1

WebSharedResource

«interface»

WebHARMessageNotifier

«interface»

FolderEnabled

«interface»

NameFilterable

«interface»

WebAdministered

«interface»

MapFeature

«interface»

WebSHAZAMConfiguration

WebVikingRC2ASHAZAM

1

11

1

1

SHAZAM

«interface» 1 1

WebSHAZAM

SHAZAMConfiguration

«typedef»

SHAZAMStatus

«typedef»

WebObjectLocation

1

1

WebObjectLocationSupporter

«interface»

1

WebHWGER02ASHAZAM

New for R8

New for R8

WebVikingRC2ASHAZAMConfiguration

VIKINGRC2AConfiguration

«typedef»

1

1

11

1

1

Searchable

«interface»

WebDevice

«interface»

1

creates

New for R8: added this class and
moved default phone and access
code to this new class.

WebHWGER02ASHAZAMConfiguration

HWGER02AConfiguration

«typedef»

New for R8

1

1

1

1

1

Updated for R8:
Moved default phone and access
code to model specific class, added
methods to determine model and
to retrieve tcp/ip settings. Added
method to retrieve config as a
CORBA union used by server.

$createWebSHAZAM(info:SHAZAMInfo,
 id:Identifier,SHAZAMStatus status,
 dm:dataModel)
$createWebSHAZAM(
 cfg:SHAZAMConfigurationEventInfo,
 status:SHAZAMStatus,
 dm:DataModel)

m_id:Identifier
m_name:String

updateLocation(loc:ObjectLocation):void
getLocation():WebObjectLocation

+getVIKINGRC2ARef():VIKINGRC2ASHAZAM
+getConfiguration():WebVikingRC2ASHAZAMConfiguration

+getHWGER02ARef():HWGER02ASHAZAM
+getConfiguration():WebHWGER02ASHAZAMConfiguration

push(Any)
processPush(Any)
-handleSHAZAMAdded()
-handleSHAZAMConfigChange()
-handleSHAZAMRemoved()
-handleSHAZAMStatusChange()
-handleSHAZAMModelChange()

+getDefaultPhone():String
+getFormattedDefaultPhone():String
+getAccessCode():String
+getRawConfiguration():VIKINGRC2AConfiguration

+getName():String
+getLocation():WebObjectLocation
+getDirection():Direction
+getPortLocationData():WebPortLocationData
+getRefreshIntervalMins():int
+isRefreshEnabled():boolean
... more existing methods
()
+getModel():SHAZAMModelTypeID
+isVikingRC2AModel():boolean
+isHwgER02aModel():boolean
+isTCPIP():boolean
+getTCPIPAddress():String
+getTCPIPPort():int
+getSHAZAMDeviceConfig():SHAZAMDeviceConfig

+isRelay1():boolean
+isRelay2():boolean

Figure 5-93. GUIShazamClasses (Class Diagram)

CHART R8 Detailed Design Rev 2 5-120 08/01/2011

5.10.1.1.1 FolderEnabled (Class)

This interface provides access to information about an object that can be stored in a folder.

5.10.1.1.2 HWGER02AConfiguration (Class)

This class contains SHAZAMConfiguration plus data that is specific to a HWG ER02a SHAZAM.

5.10.1.1.3 MapFeature (Class)

This interface provides data necessary for displaying a feature on a map.

5.10.1.1.4 NameFilterable (Class)

This java interface is implemented by classes which can be filter by name within the ObjectCache. A NameFilter object is

passed into the ObjectCache to select NameFilterable objects in the cache.

5.10.1.1.5 PushConsumerPOA (Class)

The CORBA base class for a push consumer, generated from IDL.

5.10.1.1.6 Searchable (Class)

This interface allows objects to be searched for via a substring search.

5.10.1.1.7 SHAZAM (Class)

This interface class is used to identify the common SHAZAM-specific methods which can be used to interface with a

SHAZAM field device. It specifies methods for activating and deactivating the SHAZAM in maintenance mode, refreshing

the SHAZAM (commanding the device to its last known status) and removing the SHAZAM. This interface is implemented

by a SHAZAMImpl class, which uses a helper ProtocolHdlr class to perform the model specific protocol for device command

and control.

5.10.1.1.8 SHAZAMConfiguration (Class)

This class contains data that specifies the configuration of a SHAZAM device. It is used to communicate configuration

information to/from the database, and to/from the GUI clients. The GUI sends a SHAZAMConfiguration when creating a

SHAZAM or modifying the configuration of an existing SHAZAM.Device Location member has been modified for R3B3.

CHART R8 Detailed Design Rev 2 5-121 08/01/2011

Now it contains a detailed location information.

5.10.1.1.9 SHAZAMPushConsumer (Class)

This class handles SHAZAM related CORBA events that are pushed on a SHAZAM control event channel. The

handleSHAZAMAdded method is updated in R8 to determine the model of the SHAZAM that has been added and to

construct the proper WebSHAZAM derived object for that model. The handleSHAZAMModelChange method is new to R8

and handles SHAZAM model change events.

5.10.1.1.10 SHAZAMStatus (Class)

This class contains the current status of a SHAZAM device. This class is used to store status within the SHAZAM object, and

is also used to communicate configuration information to/from the database, and to the GUI clients (one-way).

5.10.1.1.11 VIKINGRC2AConfiguration (Class)

This class contains SHAZAMConfiguration plus data that is specific to a Viking RC2A SHAZAM.

5.10.1.1.12 WebAdministered (Class)

This interface allows the implementing class to be administered via the trader console pages.

5.10.1.1.13 WebDevice (Class)

This interface contains common functionality for CHART devices.

5.10.1.1.14 WebHARMessageNotifier (Class)

This interface provides access to HAR notification capabilities for a device (DMS or SHAZAM) that is used to notify the

public of a HAR message being broadcast.

5.10.1.1.15 WebHWGER02ASHAZAM (Class)

This class provides access to model specific configuration information that applies to the HWg ER02a SHAZAM.

CHART R8 Detailed Design Rev 2 5-122 08/01/2011

5.10.1.1.16 WebHWGER02ASHAZAMConfiguration (Class)

This class provides access to configuration information that is specific to an HWg ER02a SHAZAM.

5.10.1.1.17 WebObjectLocation (Class)

This class provides access to the ObjectLocation struct which contains information about the location of an object in the

system.

5.10.1.1.18 WebObjectLocationSupporter (Class)

This interface allows common processing for objects supporting an ObjectLocation via the WebObjectLocation wrapper class.

5.10.1.1.19 WebSharedResource (Class)

This interface is implemented by any GUI-side wrapper objects representing CHART shared resources in the system,

corresponding to the SharedResource IDL interface.

5.10.1.1.20 WebSHAZAM (Class)

This class is a wrapper for a SHAZAM CORBA object, used to cache data in the GUI object cache and provide access to the

SHAZAM configuration and status data on web pages.

5.10.1.1.21 WebSHAZAMConfiguration (Class)

This class is a wrapper for the SHAZAM configuration data, including its location. It can contain communication

configuration for use of Telephony ports via port managers or for use of TCP/IP.

5.10.1.1.22 WebSHAZAMFactory (Class)

This class is used to represent a SHAZAM factory available in the system. It has a static method that can be used to create an

instance of WebSHAZAM derived object for a specific model of SHAZAM.

5.10.1.1.23 WebVikingRC2ASHAZAM (Class)

This class provides access to data that is specific to a Viking RC2A SHAZAM. This SHAZAM is operated via a telephony

CHART R8 Detailed Design Rev 2 5-123 08/01/2011

port and provides no responses to commands and does not support a status check.

5.10.1.1.24 WebVikingRC2ASHAZAMConfiguration (Class)

This class provides access to configuration data that is specific to a Viking RC2A SHAZAM.

5.11 chartlite.servlet.har

5.11.1 Class Diagrams

5.11.1.1 GUIHARServletClasses (Class Diagram)

This diagram shows classes used by the servlet to process requests related to HAR devices.

if used during add HAR

if used to edit location of existing HAR

1
1

DynListSubject

«interface»

DynListDelegateSupporter

«interface»

1

1

HARDynListSubject

HARListSupporter

DynListReqHdlrDelegate

EditHARLocationSupporter

WebHAR

1

1
AddSyncHARFormData

HARReqHdlr AP55HARReqHdlr

RequestHandler

«interface»

EditObjectLocationSupporter

«interface»

if used during add HAR
1

1

AddAP55HARFormData AddDR1500HARFormData

SyncHARReqHdlr DR1500HARReqHdlr

New for R8

pollHAR, hardware failure,
and alert/notification settings

if used to edit location of existing HAR

AddHARFormData

broadcastHARTestMessage():String

createDynList():DynList
getDynListSubjects():DynListSubject[]
getFilterValue():Object

PROP_NAME
PROP_LOCATION
PROP_CURRENT_MSG
PROP_STATUS
PROP_ACTIVE_NOTIFIERS
PROP_USED_BY
PROP_ROUTE
PROP_DIRECTION
PROP_COUNTY
PROP_PORT_MGRS
PROP_CONN_SITE
PROP_OWNING_ORG
PROP_MILE_POST

processPollHAR():String
processEditDR1500HARCtrlSettings();()
processEditDR1500HARHardwareFailureSettings();()
processEditDR1500AlertAndNotificationSettings();()
parseDR1500HardwareFailureSettings()

getName() : String
getObjectLocation() : WebObjectLocation
getUpdateParentPageURLParamStr() : String
hideGeoLocationFields() : boolean
allowComboDirections() : boolean
allowNoneDirection() : boolean
setObjectLocation(location:ObjectLocation,
 supporter : RequestHandlerSupporter,
 req : HttpServletRequest) : String

EditHARLocationSupporter(har:WebHAR)
EditHARLocationSupporter(formData:AddHARFormData)

Figure 5-94. GUIHARServletClasses (Class Diagram)

CHART R8 Detailed Design Rev 2 5-124 08/01/2011

5.11.1.1.1 AddAP55HARFormData (Class)

This class holds data specific to the AP55 HAR when adding an AP55 HAR to the system.

5.11.1.1.2 AddDR1500HARFormData (Class)

This class holds data specific to a DR1500 HAR when adding a DR1500 HAR to the system.

5.11.1.1.3 AddHARFormData (Class)

This class is used to store configuration data for a HAR during an Add operation, as the operation can require several web

pages to complete and the data from each form must be stored between requests.

5.11.1.1.4 AddSyncHARFormData (Class)

This class holds data specific to a Sync HAR when adding a Sync HAR to the system.

5.11.1.1.5 AP55HARReqHdlr (Class)

This class handles requests that are specific to the AP55 HAR model.

5.11.1.1.6 DR1500HARReqHdlr (Class)

This class handles requests that are specific to the DR1500 HAR model. In R8 this request handler is updated to support

polling of IP controlled DR1500 HARS.

5.11.1.1.7 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.11.1.1.8 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter dynamic lists can be passed from a

request handler to this class, provided the URL used for the requests contain parameters required by this class, such as the id

of the list, the property name, and/or the filter value.

CHART R8 Detailed Design Rev 2 5-125 08/01/2011

5.11.1.1.9 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a dynamic list.

5.11.1.1.10 EditHARLocationSupporter (Class)

This class implements the EditObjectLocationSupporter interface for HARs. It can be constructed with an

AddHARFormData object so it can be used during the Add HAR operation, in which case all location changes are stored in

the AddHARFormData object. It can also be constructed using a WebHAR, for use when editing the location of an existing

HAR. When this is done, the new location gets set into the actual HAR object (via a CORBA call).

5.11.1.1.11 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example, the target of the edited location

may be an existing object, or it may be a form data object for creating a new object).

5.11.1.1.12 HARDynListSubject (Class)

This class is a dyn list subject that holds a WebHAR. It also defines the property names for each column that will be shown in

the list. The following columns are added in R3B3: route, direction, port managers, connection site, owning org, and mile

post.

5.11.1.1.13 HARListSupporter (Class)

This class is a dyn list delegate supporter for the HAR list. It provides methods to create a dynamic list, get the subjects

included in the list, and to get the value for a filter.

5.11.1.1.14 HARReqHdlr (Class)

This class handles requests that are valid for any HAR model.

5.11.1.1.15 RequestHandler (Class)

This interface specifies methods that are to be implemented by classes that are used to process requests.

5.11.1.1.16 SyncHARReqHdlr (Class)

This class handles requests that are specific to the Sync HAR model.

CHART R8 Detailed Design Rev 2 5-126 08/01/2011

5.11.1.1.17 WebHAR (Class)

This class is a GUI wrapper for a CORBA HAR object.

5.11.2 Sequence Diagrams

5.11.2.1 AddDR1500HARFormData:parseFormData (Sequence Diagram)

This diagram shows the processing that occurs when DR1500 HAR form parameters are read when a DR1500 is added. In

R8, new parameters include polling, TCP/IP communications, hardware failure parameters, alerts, and notifications.

parseDR1500HardwareFailureSettings(req, DR1500HardwareFailureConfiguration config)

errMsg

parseAlertAndNotificationParams(HttpServletReqest req, DeviceAlertAndNotification data)

AddDR1500HARFormData

isCheckboxChecked(req, "pollingEnabled")

DR1500HARReqHdlr

This diagram shows the processing that occurs when DR1500 HAR form parameters are read when a DR1500 is added. In R8,
new parameters include polling, TCP/IP communications, hardware failure parameters, alerts, and notifications.

IPPortLocationDatanew

ServletUtil DeviceUtil

parseTCPIPParams(HttpServletRequest req, IPPortLocationData ipData)

errMsg

getIntParam("pollingInterval")

parseFormData(HttpServletRequest req)

Figure 5-95. AddDR1500HARFormData:parseFormData (Sequence Diagram)

5.11.2.2 DR1500HARReqHdlr:processEditDR1500HARCtrlSettings (Sequence Diagram)

This diagram shows the processing that occurs when control communications settings are updated for a DR1500 HAR.

Support for TCP/IP control is added in R8.

CHART R8 Detailed Design Rev 2 5-127 08/01/2011

isCheckBoxChecked(req,"pollingEnabled")

getIntParam("pollingInterval")

Context

[problem with any of the fields]
put(errMsg,"Error Message")

PopupTemplate.vm

DeviceUtil

errMsg

[tcpip control]
parseTCIPIPParams(req,ipPortLocationData)

DR1500HARReqHdlr HARReqUtil ServletUtil

processEditDR1500HARCtrlSettings(req, resp, ctx, supporter)

[telephony Control]
parseHARCtrlPhoneFields(req, errMsg)

getIntParam(req,"controlType")

Port.Telephony, Port.TCPIP

RequestHandler

This diagram shows the processing that occurs when control communications settings are updated for a DR1500 HAR.
Support for TCP/IP control is added in R8.

Figure 5-96. DR1500HARReqHdlr:processEditDR1500HARCtrlSettings (Sequence Diagram)

5.11.2.3 DR1500HARReqHdlr:processEditDR1500HARHardwareFailureSettings (Sequence Diagram)

This diagram shows the processing that occurs when updating the hardware failure settings for an IP controlled DR1500 HAR

PopupTemplate.vm

parseDR1500HardwareFailureSettings(req,DR1500HardwareFailureConfiguration config)

Context

[error]
ctx.put("errMsg","error");

RequestHandler

DR1500HARReqHdlr

This diagram shows the processing that occurs when updating the hardware failure settings for an IP controlled DR1500 HAR

processEditDR1500HardwareFailureSettings(req, supporter,ctx)

Figure 5-97. DR1500HARReqHdlr:processEditDR1500HARHardwareFailureSettings (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-128 08/01/2011

5.11.2.4 DR1500HARReqHdlr:processPollHARNow (Sequence Diagram)

This diagram shows the processing that occurs when an immediate request to poll a har is received.

CommandStatusMgr

HISDR1500HAR

redirect to v iew the command's status

CommandStatusMgr

CommandStatusImpl

CommandStatus

sendRedirect()

ManageResponsePlan right
required to poll when online
MaintainHAR right required to
poll when in maintenance mode
Cannot poll when offline getObject(harID)

getHARRef()

[insuffic ient rights]
insuffic ient rights

ReqHdlr

DR1500HARReqHdlr

This diagram shows the processing that occurs when an immediate request.
to poll a har is received .

RequestHandlerSupporter

ServletUtil ObjectCache

DataModel

processPollHARNow(req,resp,ctx,supporter)

getIdentifierParam(req,"harID")

har Identifier

getObjectCache()

ObjectCache

DataModel

getRef()

return null

CommandStatusImpl

HttpServletResponse

getDataModel()

getCommandStatusMgr()

pollNow(token, cmdStat)

WEBHISDR1500HAR

WebHISDR1500HAR

HISDR1500HAR

createCommandStatusImpl(loginSession.getIDObj(),"Poll HAR")

Figure 5-98. DR1500HARReqHdlr:processPollHARNow (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-129 08/01/2011

5.11.2.5 DR1500HarReqHdlr:parseHardwareFailureSettings (Sequence Diagram)

Populate config and
return an error if the
form contains invalid values

DR1500HARReqHdlr

ServletUtil

getIntParam("minimumBroadcastMonitorPercent",0)

getIntParam("minimumModulationPercent",0)

errMsg

parseHardwareFailureSettings(req, DR1500HardwareFailureConfiguration config)

This diagram shows the processing that occurs when DR1500 hardware failure form parameters are read when a DR1500 is added or
the hardware failure parameters are updated.

DR1500HARReqHdlr

getIntParam("minimumVoltage",0)

getIntParam("maximumBroadcastMonitorPercent",0)

getIntParam("maximumModulationPercent",0)

getIntParam("getVswrRatio",1)

Figure 5-99. DR1500HarReqHdlr:parseHardwareFailureSettings (Sequence Diagram)

5.12 chartlite.servlet.shazam

5.12.1 Class Diagrams

5.12.1.1 GUISHAZAMServletClasses (Class Diagram)

This diagram shows classes used by the servlet to process requests related to SHAZAM devices.

CHART R8 Detailed Design Rev 2 5-130 08/01/2011

if used during
Add SHAZAM

if used to edit location
of existingSHAZAM

1

WebSHAZAM

SHAZAMListSupporter

if used to edit location
of existingSHAZAM

1

AddSHAZAMFormData

WebDeviceAlertAndNotification

EditObjectLocationSupporter

«interface»

DynListDelegateSupporter

«interface»

1

1

DynListSubject

«interface»

DynListReqHdlrDelegate

1

1

SHAZAMDynListSubject

1

1

1

SHAZAMReqHdlr

UserFormData

EditSHAZAMLocationSupporter

uses

if used during
Add SHAZAM

1

Updated in R8:
Parses model selection.
Parses port type of Telephony or
TCP/IP, and parses related fields.
Parses alert and notification settings.

1

uses

Updated in R8:
Changes to add shazam,
new methods for get/submit of
alerts and notifications settings,
update to form used to set comm
settings, addition of form to change
model.

New in R8

1

getName() : String
getObjectLocation() : WebObjectLocation
getUpdateParentPageURLParamStr() : String
hideGeoLocationFields() : boolean
allowComboDirections() : boolean
allowNoneDirection() : boolean
setObjectLocation(location:ObjectLocation,
 supporter : RequestHandlerSupporter,
 req : HttpServletRequest) : String

EditSHAZAMLocationSupporter(formData:AddSHAZAMFormData)
EditSHAZAMLocationSupporter(shazam:WebSHAZAM)

AddSHAZAMFormData()
AddSHAZAMFormData(copy:WebSHAZAM)
getSHAZAMConfig():SHAZAMConfig
setLocation(loc:ObjectLocation):void
isCopy():boolean
parseFormData():void

-m_shazam:WebSHAZAM
PROP_NAME
PROP_LOCATION
PROP_ASSOCIATED_HAR
PROP_BEACON_STATE
PROP_STATUS
PROP_LAST_UPDATE
PROP_ROUTE
PROP_DIRECTION
PROP_COUNTY
PROP_PORT_MANAGERS
PROP_CONN_SITE
PROP_OWNING_ORG
PROP_MILE_POST

getAddSHAZAMForm():String
processAddSHAZAM():String
getEditSHAZAMLocationForm():String
getEditAlertAndNotificationSettingsForm():String
processSetAlertAndNotificationSettings():String
getEditSHAZAMModelForm():String
processChangeSHAZAMModel():String

createDynList():DynList
getDynListSubjects():DynListSubject[]
getFilterValue():String

Figure 5-100. GUISHAZAMServletClasses (Class Diagram)

5.12.1.1.1 AddSHAZAMFormData (Class)

This class is used to store data from the Add SHAZAM form while interim pages are displayed (such as the edit location

form).

5.12.1.1.2 DynListDelegateSupporter (Class)

This interface contains functionality to support the DynListReqHdlrDelegate

5.12.1.1.3 DynListReqHdlrDelegate (Class)

This class helps request handlers support dynamic lists. Requests to view, sort, or filter dynamic lists can be passed from a

request handler to this class, provided the URL used for the requests contain parameters required by this class, such as the id

of the list, the property name, and/or the filter value.

CHART R8 Detailed Design Rev 2 5-131 08/01/2011

5.12.1.1.4 DynListSubject (Class)

This interface is implemented by classes that wish to be capable of being displayed in a dynamic list.

5.12.1.1.5 EditObjectLocationSupporter (Class)

This interface provides functionality allowing the location data to be edited. (For example, the target of the edited location

may be an existing object, or it may be a form data object for creating a new object).

5.12.1.1.6 EditSHAZAMLocationSupporter (Class)

This class is used to support the generic edit location operation for SHAZAM devices.

5.12.1.1.7 SHAZAMDynListSubject (Class)

This class is a wrapper for a WebSHAZAM object that allows it to be displayed in a dynamic list.

5.12.1.1.8 SHAZAMListSupporter (Class)

This class is a DynListDelegateSupporter for the SHAZAM dynamic list. It provides SHAZAM specific functionality to the

generic DynListReqHdlrDelegate.

5.12.1.1.9 SHAZAMReqHdlr (Class)

This class processes requests related to SHAZAM devices.

5.12.1.1.10 UserFormData (Class)

This class is used to store form data between requests while a user is editing a complex form, and provides convenience

methods for parsing the values from the request.

5.12.1.1.11 WebDeviceAlertAndNotification (Class)

This class is a wrapper for a CORBA defined DeviceAlertAndNotification structure. It can be constructed from the CORBA

struct and then be used to provide access to the data defined in that struct. It can also be constructed using parameters from an

HTTP request and then used to extract a DeviceAlertAndNotification struct suitable for use when adding or editing a device.

CHART R8 Detailed Design Rev 2 5-132 08/01/2011

5.12.1.1.12 WebSHAZAM (Class)

This class is a wrapper for a SHAZAM CORBA object, used to cache data in the GUI object cache and provide access to the

SHAZAM configuration and status data on web pages.

5.12.2 Sequence Diagrams

5.12.2.1 SHAZAMReqHdlr:getAddSHAZAMForm (Sequence Diagram)

This diagram shows the processing that is performed when the administrator chooses to add a SHAZAM to the system or

create a new SHAZAM by copying an existing SHAZAM. This processing is also performed if an add or copy is already in

progress and the Add form is being redisplayed after navigating away from the add form to set the location data. If this is the

case, a formID parameter will be used to retrieve the form data object from the temp object store. If performing a copy, the

WebSHAZAM being copied will be retrieved from the object cache and will be used to create an AddSHAZAMFormData

object. This will have the effect of pre-populating the Add SHAZAM form with data from the SHAZAM being copied. If

this is an Add SHAZAM operation that was not already in progress (neither formID nor shazamID is present in the request), a

new empty AddSHAZAMFormData object is created. The form data is stored in the temp object store if not already stored

there. Other objects needed for the form for select lists are obtained from the object cache and placed in the context. The Add

SHAZAM form is then displayed to the user. Note: getAddSHAZAMForm exists prior to R8 and is modified in R8 to load

the context to support the selection of alert op center and notification group for comm and hardware failures.

CHART R8 Detailed Design Rev 2 5-133 08/01/2011

New for R8
put("opCenterList", WebOpCenter[])

put("notifyGroupList", WebNotificationGroup)

NOTE: getAddSHAZAMForm exists prior to R8 and is modified in R8 to add objects to
the context to support the selection of alert op center and notification group for comm and hardware failures.

[no orgs configurable
by user]
Error.vm

Administrator
SHAZAMReqHdlr RequestHandlerSupporter NavLinkRightsContextTempObjectStore AddSHAZAMFormData

getAddSHAZAMForm()

getOrgsConfigurableByUser()

createTempObjectID()
formID

setID(formID)

add(formID, AddSHAZAMFormData)

Request Parameters:
formID - present if the add form is being redisplayed after an interim submit (such as setting the location data)
shazamID - present if this is a copy operation being invoiked

getObject(formID)

put("formData", formData)

Arrays

getCachedObjectsOfType(WebSHAZAMFactory.c lass)

WebSHAZAMFactory[]

getCachedObjectsOfType(WebPortManager.c lass)
WebPortManager[]

sort(WebSHAZAMFactory[])

sort(WebPortManager[])

put("shazamFactoryList", WebSHAZAMFactory[])

put("orgList", WebOrganization[])

put("portMgrList", WebPortManager[])

put("directionInfo", new DirectionInfo())

AddSHAZAM.vm

The following processing is performed if a formID is present in the request, indicating add is already in progress.

The following processing is performed if a shazamID is present in the request, indicating a copy operation.

The following processing is performed if neither formID or shazamID is present in the request, indicating a new Add operation.

The following is performed if the AddSHAZAMFormData is newly created for Add or Copy above.

getCachedObject(shazamID)
WebSHAZAM

create(WebSHAZAM)

canConfigureSHAZAM(WebSHAZAM)

boolean
[no rights]
Error.vm

create

AddSHAZAMFormData

Figure 5-101. SHAZAMReqHdlr:getAddSHAZAMForm (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-134 08/01/2011

5.12.2.2 SHAZAMReqHdlr:processAddSHAZAM (Sequence Diagram)

This diagram shows the processing that takes place when the user submits the Add SHAZAM Form. The formID is retreived

from the request parameters and is used to retrieve the form data from the temp object store. The form data's

populateFromRequest method is used to get all request parameters into the form data object, and its getSHAZAMConfig()

method is used to populate a SHAZAMConfig object using the request parameters. The selected creation site (factory) is not

part of the SHAZAMConfig, so it is retrieved from the form data separately. Any errors that are detected by the form data

when creating the SHAZAMConfiguration or when attempting to get the selected factory ID cause the AddSHAZAM form to

be redisplayed with an error message. If there were no errors, the SHAZAMConfiguration is passed to the SHAZAMFactory

to create a new SHAZAM object. The new SHAZAM is then called to obtain its ID, status, and configuration to allow a

WebSHAZAM object to be created and stored in the GUI cache. NOTE: processAddSHAZAM exists prior to R8 and is

modified in R8 to support multiple SHAZAM models.

CHART R8 Detailed Design Rev 2 5-135 08/01/2011

New for R8:
Create derived WebSHAZAM
object for the SHAZAM model.

New for R8:
Pass union that has config for
the specific SHAZAM model.
Receive a SHAZAMInfo object.

R8: This will be a derived class for the specified model.

void or ChartLiteException[ChartLiteException]
redirect to

getAddSHAZAMForm

[factory ID not specified
or factory not found]

redirect to
getAddSHAZAMForm

WebSHAZAMConfiguration

New for R8: the derived class creates
a CORBA union and loads with the config
specific to the model.

check unique shazam name

validate har notifier location

getSHAZAMDeviceConfig()

Put form data in context in case of error that
requires form to be redisplayed.

[no rights]
redirect to

getAddSHAZAMForm

put("formData", formData)

getIdentifierParam("factory")
Identifier or null

getCachedObject(factoryID)

NOTE: processAddSHAZAM exists prior to R8 and is modified in R8 to handle
multiple SHAZAM models.

DataModel

objectAdded(Identifier, WebSHAZAM)

createWebSHAZAM(SHAZAM, ID, SHAZAMStatus, DataModel)

[Exception addding
SHAZAM]
redirect to

getAddSHAZAMForm

redirect to
SHAZAM list

SHAZAM

SHAZAMInfo

create

getID()
Identifier

getStatus()
SHAZAMStatus

WebSHAZAMFactory

SHAZAMFactory

getFactoryRef()
SHAZAMFactory

SHAZAMReqHdlr TempObjectStore TokenManipulator

getObject(formID)

parseFormData()

WebSHAZAMConfiguration

checkAccess(token, configHARRight, config.m_owningOrgID)

WebSHAZAMFactory

RequestHandlerSupporter

processAddSHAZAM()

AddSHAZAMFormData

getConfig()

[name not unique]
redirect to

getAddSHAZAMForm

[location not valid
for notifier]
redirect to

getAddSHAZAMForm

boolean

Context

createSHAZAM(token, shazamDeviceConfig)

Administrator

Request Parameters:
formID - ID of form data stored in temp object store
field params - parameters from each field on the Add form

AddSHAZAMFormData

Figure 5-102. SHAZAMReqHdlr:processAddSHAZAM (Sequence Diagram)

5.12.2.3 SHAZAMReqHdlr:processChangeSHAZAMModel (Sequence Diagram)

This diagram shows the processing that is performed when the user submits the form used to change the SHAZAM model.

The parameters are read and the WebSHAZAM object for the specified SHAZAM is retrieved from the data model. The

user's rights are checked to make sure they have permission to modify the configuration for the SHAZAM. The SHAZAM

status is checked to make sure the SHAZAM is offline. The SHAZAM CORBA object reference is obtained and a command

CHART R8 Detailed Design Rev 2 5-136 08/01/2011

status object is created. The SHAZAM CORBA object is called to change the model; status of the operation will be reported

back to the user via the CommandStatus object. The user's browser is then redirected to the command status page where they

can monitor the progress of the operation.

isOffline()

[not offline]
Error.vm

SHAZAM

CommandStatusImpl

WebSHAZAMNavLinkRightsDataModel

Parameters:
shazamID
model

HttpServletRequestSHAZAMReqHdlr
Operator

WebSHAZAM or null
getObject(shazamID)

[parameter missing]
Error.vm

getParameter()

processChangeSHAZAMModel()

redirect to command
status page

changeModelType(token, SHAZAMModelTypeID, CommandStatus)

CommandStatus
getRef()

create

SHAZAM
getRef()

[not authorized to config]
Error.vm

boolean
canConfigure(WebSHAZAM)

[WebSHAZAM not found]
Error.vm

boolean

Figure 5-103. SHAZAMReqHdlr:processChangeSHAZAMModel (Sequence Diagram)

5.12.2.4 SHAZAMReqHdlr:processEditCommsConfig (Sequence Diagram)

This diagram shows the processing performed when the user submits the form used to edit the communication settings for the

SHAZAM. The parameters are read from the request with the set of required parameters dependent on the port type specified.

If parameters required for the selected port type are missing or invalid an error is returned. The SHAZAM ID is used to find

the WebSHAZAM wrapper object in the GUI cache. If not found an error is returned. The user rights are checked to validate

that the user has the right to change the configuration of the SHAZAM; if not an error message is returned. The configuration

of the SHAZAM is retrieved from the WebSHAZAM and the model of the SHAZAM is checked. Only TCP/IP

CHART R8 Detailed Design Rev 2 5-137 08/01/2011

communications are supported for HWG ER02A, and only Telephony communications are supported for Viking RC2A. The

model specific CORBA reference is obtained and called to retrieve the model specific configuration from the server. The

parameters from the request are loaded into the appropriate members of the configuration object. A CommandStatus object is

created, and the model specific CORBA reference's setConfiguration method is called. The user's browser is then redirected

to the view command status page where they can monitor the progress of the setConfiguration operation.

NavLinkRights

canConfigureSHAZAM(WebSHAZAM)
boolean

[user can't configure]
Error.vm

create

setConfiguration(token, HWGER02AConfiguration, CommandStatus)

redirect to
command status page

Operator
SHAZAMReqHdlr HttpServletRequest

Parameters:
shazamID
refreshEnabled
refreshInterval
portType

Additional Parameters
when portType is
Telephony:

phone
accessCode
portMgrTimeout

processEditCommsConfig()
getParameter()

String

Additional Parameters
when portType is
TCP/IP:

ipAddress
port

DataModel

[parameter missing or
invalid]

Error.vm
getObject(shazamID)

WebSHAZAM or null
[WebSHAZAM not found]

Error.vm

CommandStatusImpl

getConfiguration()
VIKINGRC2AConfiguration

load parameter values
into config

create

setConfiguration(token, VIKINGRC2AConfiguration, CommandStatus)

redirect to
command status page

WebSHAZAM WebSHAZAMConfigurationHWGER02ASHAZAMVIKINGRC2ASHAZAM

CommandStatusImpl

getConfiguration()

WebSHAZAMConfiguration

isHwgER02a()
boolean[HWGER02A and portType

NOT TCPIP]
Error.vm

isVikingRC2A()
boolean[VikingRC2A and portType

NOT Telephony]
Error.vm

[NOT ER02A]

getHWGER02ARef()
HWGER02ASHAZAM

getConfiguration()
HWGER02AConfiguration

load parameter values
into config

Figure 5-104. SHAZAMReqHdlr:processEditCommsConfig (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-138 08/01/2011

5.12.2.5 SHAZAMReqHdlr:processSetAlertAndNotificationSettings (Sequence Diagram)

This diagram shows the processing that is performed when the user submits the form used to set the alert and notification

settings for a SHAZAM. The SHAZAM is retrieved from the GUI cache and a check is made to verify the user is authorized

to configure the SHAZAM. The form parameters are retreived and parsed by wrapping the HttpServletRequest into an

HttpRequestParameterSupplier and passing that supplier to the constructor of the WebDeviceAlertandNotification class. The

existing SHAZAM configuration is retrieved from the server and the DeviceAlertAndNotification object in the configuration

is replaced with the object parsed from the request parameters. A CommandStatus object is created and the SHAZAM's

setConfiguration() method is called to set the configuration asynchronously. The user's browser is redirected to the command

status page where they can monitor the progress of the command. This process supports multiple SHAZAM models - the

proper SHAZAM derived object reference is used to retrieve and set the model specific configuration.

DeviceAlertAndNotification

HttpRequestParameterSupplierImpl

WebDeviceAlertAndNotification

create(HttpServletRequest)

create(HttpRequestParameterSupplierImpl)

HttpServletRequest NavLinkRights

shazamID

WebSHAZAM or null

canConfigureSHAZAM(webSHAZAM)

[SHAZAM not found]
Error.vm

boolean

SHAZAMReqHdlr

processSetAlertAndNotificationSettings()

parse parameters into a
DeviceAlertAndNotification object

throw exception if error

DataModel

getParameter("shazamID")

getObject(shazamID)

[permission denied]
Error.vm

redirect to command status page

WebSHAZAM VIKINGRC2ASHAZAM HWGER02ASHAZAM

SHAZAMConfiguration

SHAZAMConfiguration
exists in both model
configuration objects

CommandStatusImpl

Used to asynchronously track
status of the command.

getRef()
VIKINGRC2ASHAZAM or HWGER02ASHAZAM

[model is Vik ing RC2A]
getConfiguration()

VIKINGRC2AConfiguration

[model is HWG ER02A]
getConfiguration

HWGER02AConfiguration

set m_deviceAlertAndNotification

[model is Vik ing RC2A]
setConfiguration(token, VIKINGRC2AConfiguration, CommandStatus)

getDeviceAlertAndNotification()

Operator

create

[model is HWGER02AConfiguration]
setConfiguration(token, HWGER02AConfiguration, CommandStatus)

Figure 5-105. SHAZAMReqHdlr:processSetAlertAndNotificationSettings (Sequence Diagram)

CHART R8 Detailed Design Rev 2 5-139 08/01/2011

5.13 chartlite utilities

5.13.1 Class Diagrams

5.13.1.1 chartlite.util_classes (Class Diagram)

This diagram shows utility classes used in the CHART GUI servlet.

j av a.lang.Comparable
«interface»

ParamSupplier
«interface»

Dev iceUtil

R8: Updated to include utility method for reading
comm/hardware alert and notifications from request parameters

Obj ectLocationDistance

HttpServ letRequestParamSupplier

Serv letUtil

UserFormData

getObjectFromIDString(dataModel:DataModel, idStr:String) : Object
getCurrentUserToken(req:HttpServletRequest):byte[]
sendJSONObject(resp:HttpServletResponse, obj:JSONObject) : void
getStringParam(supplier:ParamSupplier, paramName:String, defaultValue:String) : String
getBooleanParam(supplier:ParamSupplier, paramName:String) : boolean
getIntParam(supplier:ParamSupplier, paramName:String, defaultValue:int) : int
isCheckboxChecked(supplier:ParamSupplier, paramName:String) : boolean
getNearbyObjects(loc : GeoLocation, objs : ArrayList<WebObjectLocationSupporter>,
 maxDistanceMiles : double) : ArrayList<ObjectLocationDistance<WebObjectLocationSupporter>>

getParameter(param : String) : String

m_req : HttpServletRequest

parseTCPIPParams(HttpServletRequest req, IPPortLocationData ipData):String
parseAlertAndNotificationparams(HttpServletRequest req, DeviceAlertAndNotificationData data)
parsePortManagerCommsTableParms(HttpServletRequest req, PortLocationData portLocationData data)

getObject() : T
getDistanceMiles() : double

m_obj : T
m_distanceMiles : double

Figure 5-106. chartlite.util_classes (Class Diagram)

CHART R8 Detailed Design Rev 2 5-140 08/01/2011

5.13.1.1.1 DeviceUtil (Class)

This utility class contains non device specific utility methods.

5.13.1.1.2 HttpServletRequestParamSupplier (Class)

This class implements the ParamSupplier interface to provide parameters from an HttpServletRequest object.

5.13.1.1.3 java.lang.Comparable (Class)

This interface allows two objects to be compared for the purposes of sorting.

5.13.1.1.4 ObjectLocationDistance (Class)

This class stores an object and a calculated distance to another point. It is used to avoid re-calculating the distance multiple

times.

5.13.1.1.5 ParamSupplier (Class)

This interface allows parameter values to be retrieved. It was added to handle parameters supplied by a HttpServletRequest

and form data using common code.

5.13.1.1.6 ServletUtil (Class)

This class provides static utility methods useful to request handlers in the servlet.

5.13.1.1.7 UserFormData (Class)

This class is used to store form data between requests while a user is editing a complex form, and provides convenience

methods for parsing the values from the request.

CHART R8 Detailed Design Rev 2 7-141 08/01/2011

6 Deprecated Functionalities

No CHART functionality is being deprecated with the introduction of R8.

7 Exporter Changes

The following table shows data fields being added in R8 and indicates which will be exported and which will not be exported.

HAR TCP_HOST WILL be Exported WILL NOT be exported

 TCP_PORT X

 MIN_DC_VOLTAGE X

 MIN_BROADCAST_MONITOR_PCT X

 MAX_BROADCAST_MONITOR_PCT X

 MIN_MODULATION_PCT X

 MAX_MODULATION_PCT X

 MAX_VSWR X

 LAST_SETUP_TIME X

 LAST_STATUS_MISMATCH_TIME X

 POWER_STATUS X

 DC_VOLTAGE X

 BROADCAST_MONITOR_PCT X

 HAR_MODE X

 HAR_SUB_MODE X

CHART R8 Detailed Design Rev 2 7-142 08/01/2011

 HAR_SYNC_MODE X

 XMIT_SET_POWER X

 XMIT_FORWARD_POWER X

 XMIT_REFLECTED_POWER X

 XMIT_VSWR X

 XMIT_MODULATION_PCT X

 DCC_VERSION_INFO X

 HAR_VERSION_INFO X

 HAR_TIMESTAMP X

 COMMFAIL_ALERT_CENTER_ID X

 HWFAIL_ALERT_CENTER_ID X

 COMMFAIL_NOTIF_GROUP_ID X

 COMMFAIL_NOTIF_GROUP_NAME X

 HWFAIL_NOTIF_GROUP_ID X

 HWFAIL_NOTIF_GROUP_NAME X

SHAZAM TCP_HOST X

 TCP_PORT X

 RELAY_NUMBER X

 BEACON_STATE_ACTUAL X

 COMMFAIL_ALERT_CENTER_ID X

 HWFAIL_ALERT_CENTER_ID X

 COMMFAIL_NOTIF_GROUP_ID X

CHART R8 Detailed Design Rev 2 8-143 08/01/2011

 COMMFAIL_NOTIF_GROUP_NAME X

 HWFAIL_NOTIF_GROUP_ID X

 HWFAIL_NOTIF_GROUP_NAME X

8Mapping To Requirements

The following table shows how the requirements in the CHART R8 Requirements document map to design elements contained in

this design.

Tag Requirement Feature Use Cases Other Design Elements

SR1 ADMINISTER SYSTEMS AND

EQUIPMENT

 N/A N/A (Heading)

SR1.5 INSTALL AND MAINTAIN

DEVICES

 N/A N/A (Heading)

SR1.5.2 PUT EQUIPMENT/ DEVICES ON-

LINE

 N/A N/A (Heading)

SR1.5.2.1 The system shall allow the user with

appropriate rights to select (or modify)

the equipment device parameters.

 Set HAR Configuration

Set SHAZAM

Configuration

N/A (General)

SR1.5.2.1.5 The system shall allow a suitably

privileged user to add a new device

which communicates via an

implemented protocol.

 Add HAR Add

SHAZAM

SHAZAMReqHdlr:processAddSHAZAM SD

SHAZAMControlModule.createSHAZAM SD

SR1.5.2.1.5.2 [MOVED TO 1.5.2.1.5.11.1] The system

shall support HAR communication via a

Field Management Server that

implements Telephony communications

mediums.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.5.2.1 [MOVED TO 1.5.2.1.5.11.3] The system

shall support sending messages to at

least four HARs simultaneously. Each

individual constituent HAR within a

Synchronized HAR will count as one

HAR against this total.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

CHART R8 Detailed Design Rev 2 8-144 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.5.2.1.

1

[MOVED TO 1.5.2.1.5.11.3.1] A

Synchronized HAR shall be comprised

of individual constituent HARs that play

messages in such a way that the

messages on each individual constituent

HAR play at exactly the same time.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.5.2.1.

1.1

[MOVED TO 1.5.2.1.5.11.3.1.1] The

system shall support HAR message

synchronization for HIS DR1500 HARs.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.5.2.1.

1.2

[MOVED TO 1.5.2.1.5.11.3.1.2]

Individual constituent HARs within a

Synchronized HAR may be designated

as active or inactive.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.5.2.1.

1.2.1

[MOVED TO 1.5.2.1.5.11.3.1.2.1] An

inactive individual constituent HAR

within a Synchronized HAR shall not

broadcast any message.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.5.2.1.

1.2.2

[MOVED TO 1.5.2.1.5.11.3.1.2.2] Each

active individual constituent HAR within

a Synchronized HAR shall always

broadcast an identical message in a

synchronized manner.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.5.2.2 [MOVED TO 1.5.2.1.5.11.4] If a HAR

has Notifiers (SHAZAMs or DMSs

acting as SHAZAMs) associated with it

and a message that requires Notifiers on

is sent to it, the specified Notifiers shall

be turned on only after a message has

been activated on the HAR .

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.5.2.3 [MOVED TO 1.5.2.1.5.11.5] If a HAR

has active Notifiers (SHAZAMs or

DMSs acting as SHAZAMs), the

Notifiers shall be turned off before the

current message is deactivated.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

CHART R8 Detailed Design Rev 2 8-145 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.5.3 [MOVED TO 1.5.2.1.5.12.1] The system

shall support SHAZAM communication

via a Field Management Server that

implements Telephony communications

mediums.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.5.11 The system shall support HAR

communications.

HAR/SH

AZAM

Set HAR

Communication

Settings

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings AddDR1500HARFormData:parseFormData

SR1.5.2.1.5.11.

1

The system shall support HAR

communication via a Field Management

Server that implements Telephony

communications mediums.

HAR/SH

AZAM

Set Telephony

Communication

Settings

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings AddDR1500HARFormData:parseFormData

AP55AndDR1500HARCommand.getDTMFComma

nd SD

SR1.5.2.1.5.11.

2

The system shall support HAR

communications via a TCP/IP

communications medium.

HAR/SH

AZAM

Set TCPIP

Communication

Settings

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings AddDR1500HARFormData:parseFormData

HARProtocolsPkg/HARProtocolsPkg.cad

HARProtocolsPkg/HARProtocolsHdlrDispatch.cad

HISDR1500ProtocolHdlr:sendSerialDataToHAR SD

AP55andDR1500HARCommand.getByteCommand

SD HISDR1500ProtocolHdlr:parseByteResponse

SD ByteUtil:asciiBytesToInt SD

ByteUtil:intToAsciiBytes SD

SR1.5.2.1.5.11.

3

The system shall support sending

messages to at least four HARs

simultaneously. Each individual

constituent HAR within a Synchronized

HAR will count as one HAR against this

total.

HAR/SH

AZAM

Set HAR Message HISDR1500ProtocolHdlr:BroadcastSlots SD

HISDR1500ProtocolHdlr:recordMessage SD

HISDR1500ProtocolHdlr:reclaimMemory

SR1.5.2.1.5.11.

3.1

A Synchronized HAR shall be

comprised of individual constituent

HARs that play messages in such a way

that the messages on each individual

constituent HAR play at exactly the

same time.

HAR/SH

AZAM

Set HAR Message HISDR1500ProtocolHdlr:BroadcastSlots SD

HISDR1500ProtocolHdlr:recordMessage SD

HISDR1500ProtocolHdlr:reclaimMemory

SR1.5.2.1.5.11.

3.1.1

The system shall support HAR message

synchronization for HIS DR1500 HARs.

HAR/SH

AZAM

Set HAR Message HISDR1500ProtocolHdlr:BroadcastSlots SD

HISDR1500ProtocolHdlr:recordMessage SD

HISDR1500ProtocolHdlr:reclaimMemory

CHART R8 Detailed Design Rev 2 8-146 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.5.11.

3.1.2

Individual constituent HARs within a

Synchronized HAR may be designated

as active or inactive.

HAR/SH

AZAM

Set HAR Message Use Case Only

SR1.5.2.1.5.11.

3.1.2.1

An inactive individual constituent HAR

within a Synchronized HAR shall not

broadcast any message.

HAR/SH

AZAM

Set HAR Message Use Case Only

SR1.5.2.1.5.11.

3.1.2.2

Each active individual constituent HAR

within a Synchronized HAR shall

always broadcast an identical message in

a synchronized manner.

HAR/SH

AZAM

Set HAR Message Use Case Only

SR1.5.2.1.5.11.

4

If a HAR has Notifiers (SHAZAMs or

DMSs acting as SHAZAMs) associated

with it and a message that requires

Notifiers on is sent to it, the specified

Notifiers shall be turned on only after a

message has been activated on the HAR.

HAR/SH

AZAM

Set HAR Message Use Case Only

SR1.5.2.1.5.11.

5

If a HAR has active Notifiers

(SHAZAMs or DMSs acting as

SHAZAMs), the Notifiers shall be

turned off before the current message is

deactivated.

HAR/SH

AZAM

Blank HAR Use case Only

SR1.5.2.1.5.12 The system shall support SHAZAM

communications.

HAR/SH

AZAM

Set SHAZAM

Communication

Settings

Use Case Only

SR1.5.2.1.5.12.

1

The system shall support SHAZAM

communication via a Field Management

Server that implements Telephony

communications mediums.

HAR/SH

AZAM

Set SHAZAM

Communication

Settings

SHAZAMReqHdlr:processEditCommsConfig SD

SHAZAMControlModule.setConfiguration SD

SR1.5.2.1.5.12.

2

The system shall support SHAZAM

communications via a TCP/IP

communications medium.

HAR/SH

AZAM

Set SHAZAM

Communication

Settings

SHAZAMReqHdlr:processEditCommsConfig SD

SHAZAMControlModule.setConfiguration SD

SR1.5.2.1.8 The system shall support configuration

parameters for HAR devices.

HAR/SH

AZAM

Set HAR Configuration DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings SD

AddDR1500HARFormData:parseFormData SD

DR1500HARReqHdlr:parseHardwareFailureSettings

SD

CHART R8 Detailed Design Rev 2 8-147 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.8.13 Specify HIS DR1500 HAR

Configuration

HAR/SH

AZAM

Set HAR Configuration DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings SD

AddDR1500HARFormData:parseFormData SD

DR1500HARReqHdlr:parseHardwareFailureSettings

SD SHAZAMContorlModule.setConfiguration SD

SR1.5.2.1.8.13.

4

[CHANGED AND MOVED TO

1.5.2.1.8.13.18.1.3] The system shall

allow the user to specify the access code

for a HIS DR1500 HAR.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.8.13.

5

[CHANGED AND MOVED TO

1.5.2.1.8.13.18.2.1] The system shall

allow the user to specify the default

phone number of a HIS DR1500 HAR’s

control line (10, 11, or 12 digits).

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.8.13.

6

[CHANGED AND MOVED TO

1.5.2.1.8.13.18.2.2] The system shall

allow the user to specify the port

manager configuration for a HIS

DR1500 HAR’s control line, as defined

in the Specify Port Manager

Configuration requirements.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.8.13.

7

[CHANGED AND MOVED TO

1.5.2.1.8.13.18.1] The system shall

indicate to the user that a Telephony-

type port will be used when

communicating with a HIS DR1500

HAR’s control line.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.8.13.

18

The system shall allow a suitably

privileged user to specify the port type to

be used to communicate with a HIS

DR1500 HAR.

HAR/SH

AZAM

Set HAR

Communication

Settings

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings AddDR1500HARFormData:parseFormData

SR1.5.2.1.8.13.

18.1

The system shall allow the user to

specify that a Telephony port shall be

used to communicate with a HIS

DR1500 HAR.

HAR/SH

AZAM

Set HAR

Communication

Settings

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings AddDR1500HARFormData:parseFormData

CHART R8 Detailed Design Rev 2 8-148 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.8.13.

18.1.1

The system shall allow the user to

specify the default phone number of a

HIS DR1500 HAR’s control line (10, 11,

or 12 digits) when the configuration

indicates a Telephony port is to be used

to communicate with the HAR.

HAR/SH

AZAM

Set Telephony

Communication

Settings

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings AddDR1500HARFormData:parseFormData

SR1.5.2.1.8.13.

18.1.2

The system shall allow the user to

specify the port manager configuration

for a HIS DR1500 HAR’s control line,

as defined in the Specify Port Manager

Configuration requirements, when the

HAR configuration specifies a

Telephony port is used to communicate

with the HAR.

HAR/SH

AZAM

Set Telephony

Communication

Settings

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings AddDR1500HARFormData:parseFormData

SR1.5.2.1.8.13.

18.1.3

The system shall allow the user to

specify the access code for a HIS

DR1500 HAR that is set to communicate

via a Telephony port.

HAR/SH

AZAM

Set HAR

Communication

Settings

HARControlModule:fmsGetConnectedPort SD

SR1.5.2.1.8.13.

18.2

The system shall allow the user to

specify that a TCP/IP port shall be used

to communicate with a HIS DR1500

HAR.

HAR/SH

AZAM

Set HAR

Communication

Settings

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings AddDR1500HARFormData:parseFormData

SR1.5.2.1.8.13.

18.2.1

The system shall allow the user to

specify the IP address and port of a HIS

DR1500 HAR when its configuration

indicates a TCP/IP port is to be used to

communicate with the HAR.

HAR/SH

AZAM

Set TCPIP

Communication

Settings

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings AddDR1500HARFormData:parseFormData

SR1.5.2.1.8.13.

18.2.2

The system shall allow the user to

specify if a HIS DR1500 HAR is to be

automatically polled when the

configuration specifies that a TCP/IP

port is to be used to communicate with

the HAR.

HAR/SH

AZAM

Set HAR Configuration AddDR1500HARFormData:parseFormData

SR1.5.2.1.8.13.

18.2.2.1

The system shall allow the Polling

Interval to be specified if automatic

polling is enabled for a HIS DR1500

HAR.

HAR/SH

AZAM

Set HAR Configuration AddDR1500HARFormData:parseFormData

CHART R8 Detailed Design Rev 2 8-149 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.8.13.

18.2.2.2

The default polling rate for a HIS

DR1500 HAR shall be 5 minutes.

HAR/SH

AZAM

Set HAR Configuration Use Case Only

SR1.5.2.1.8.13.

18.2.4

The system shall default the TCP/IP port

to 200 when adding a HIS DR1500 HAR

to the system. (The user can override this

default)

HAR/SH

AZAM

Set HAR Configuration Use Case Only

SR1.5.2.1.8.13.

20

The system shall allow a suitably

privileged user to specify thresholds

used to detect hardware failures when

the configuration specifies that a TCP/IP

port is to be used to communicate with a

HIS DR1500 HAR.

HAR/SH

AZAM

Set DR1500 Hardware

Failure Detection

Settings

DR1500HARReqHdlr:parseHardwareFailureSettings

DR1500HARReqHdlr:processHardwareFailureSettin

gs AddDR1500HARFormData:parseFormData

SR1.5.2.1.8.13.

20.1

The system shall allow the user to

specify the minimum voltage value, used

to determine if the HIS DR1500 HAR is

hardware failed.

HAR/SH

AZAM

Set DR1500 Hardware

Failure Detection

Settings

DR1500HARReqHdlr:parseHardwareFailureSettings

DR1500HARReqHdlr:processHardwareFailureSettin

gs

SR1.5.2.1.8.13.

20.4

The system shall allow the user to

specify a maximum voltage standing

wave ratio (VSWR), used to determine if

the HIS DR1500 HAR is hardware

failed.

HAR/SH

AZAM

Set DR1500 Hardware

Failure Detection

Settings

DR1500HARReqHdlr:parseHardwareFailureSettings

DR1500HARReqHdlr:processHardwareFailureSettin

gs

SR1.5.2.1.8.13.

21

The system shall allow a suitably

privileged user to specify alert and

notification settings for a HAR.

HAR/SH

AZAM

Set HAR Configuration AlertAndNotificationHelper:notifyAndAlert SD

SR1.5.2.1.8.13.

21.1

The system shall support setting a

responsible Center for a HAR which is

to receive the Device Failure Alert when

the device goes into hardware failure.

HAR/SH

AZAM

Set Alert and

Notification Settings

AlertAndNotificationHelper:notifyAndAlert SD

SR1.5.2.1.8.13.

21.2

The system shall support setting a

responsible Center for a HAR which is

to receive the Device Failure Alert when

the device goes into communication

failure.

HAR/SH

AZAM

Set Alert and

Notification Settings

AlertAndNotificationHelper:notifyAndAlert SD

SR1.5.2.1.8.13.

21.3

The system shall support setting a

notification group to receive HAR

communication failure notification

messages.

HAR/SH

AZAM

Set Alert and

Notification Settings

AlertAndNotificationHelper:notifyAndAlert SD

CHART R8 Detailed Design Rev 2 8-150 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.8.13.

21.4

The system shall support setting a

notification group to receive HAR

hardware failure notification messages.

HAR/SH

AZAM

Set Alert and

Notification Settings

AlertAndNotificationHelper:notifyAndAlert SD

SR1.5.2.1.8.13.

21.5

The system shall support setting an

operations center or notification group to

"None" to disable the sending of alerts

and/or notifications.

HAR/SH

AZAM

Set Alert and

Notification Settings

AlertAndNotificationHelper:notifyAndAlert SD

SR1.5.2.1.9 The system shall support configuration

parameters for SHAZAM devices.

HAR/SH

AZAM

Set SHAZAM

Configuration

GUISHAZAMClases CD

SR1.5.2.1.9.11 Specify SHAZAM Configuration HAR/SH

AZAM

Set SHAZAM

Configuration

GUISHAZAMClases CD

SR1.5.2.1.9.11.

6

[CHANGED AND MOVED TO

1.5.2.1.9.11.12.2] The system shall

allow the user to specify the default

phone number of the SHAZAM (10, 11,

or 12 digits).

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.9.11.

7

[CHANGED AND MOVED TO

1.5.2.1.9.11.12.1.4] The system shall

allow the user to specify the access code

for the SHAZAM.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.9.11.

9

The system shall allow the user to

specify the polling (refresh) interval for

a SHAZAM.

HAR/SH

AZAM

Set SHAZAM

Configuration

SHAZAMReqHdlr:processEditCommsSettings SD

SHAZAMControlModule.setConfiguration SD

SR1.5.2.1.9.11.

9.4

The default polling (refresh) interval

when adding a HWG-ER02a SHAZAM

shall be 5 minutes. (The user can

override this value)

HAR/SH

AZAM

Set SHAZAM

Configuration

Use Case Only

SR1.5.2.1.9.11.

10

[CHANGED AND MOVED TO

1.5.2.1.9.11.12.1.3] The system shall

allow the user to specify the port

manager configuration for the

SHAZAM, as defined by the Specify

Port Manager Configuration

requirements.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

CHART R8 Detailed Design Rev 2 8-151 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.9.11.

11

[CHANGED AND MOVED TO

1.5.2.1.9.11.12.1.1] The system shall

indicate to the user that a Telephony-

type port will be used when

communicating with the SHAZAM.

HAR/SH

AZAM

N/A (Moved) N/A (Moved)

SR1.5.2.1.9.11.

12

The system shall allow the user to

specify the model of the SHAZAM.

HAR/SH

AZAM

Set SHAZAM

Configuration

SHAZAMReqHdlr:processAddSHAZAM SD

SHAZAMReqHdlr:processChangeSHAZAMModel

SD SHAZAMControlModule.createSHAZAM SD

SHAZAMControlModule.changeModelType SD

SR1.5.2.1.9.11.

12.1

The system shall support the Viking

RC2A SHAZAM model.

HAR/SH

AZAM

Set SHAZAM

Configuration

SHAZAMReqHdlr:processAddSHAZAM SD

SHAZAMReqHdlr:processChangeSHAZAMModel

SD SHAZAMControlModule.createSHAZAM SD

SHAZAMControlModule.changeModelType SD

SR1.5.2.1.9.11.

12.1.1

The system shall indicate to the user that

a Telephony-type port will be used when

communicating with a Viking RC2A

SHAZAM.

HAR/SH

AZAM

Set SHAZAM

Configuration Settings

SHAZAMReqHdlr:processEditCommsSettings SD

SR1.5.2.1.9.11.

12.1.2

The system shall allow the user to

specify the default phone number of the

Viking RC2A SHAZAM (10, 11, or 12

digits).

HAR/SH

AZAM

Set Telephony

Communication

Settings

SHAZAMReqHdlr:processEditCommsSettings SD

SR1.5.2.1.9.11.

12.1.3

The system shall allow the user to

specify the port manager configuration

for the Viking RC2A SHAZAM, as

defined by the Specify Port Manager

Configuration requirements.

HAR/SH

AZAM

Set Telephony

Communication

Settings

Use Case Only

SR1.5.2.1.9.11.

12.1.4

The system shall allow the user to

specify the access code for the Viking

RC2A SHAZAM.

HAR/SH

AZAM

Set SHAZAM

Configuration

SHAZAMReqHdlr:processEditCommsSettings SD

SR1.5.2.1.9.11.

12.2

The system shall support the HWG-

ER02a SHAZAM model.

HAR/SH

AZAM

Set SHAZAM

Configuration

SHAZAMReqHdlr:processAddSHAZAM SD

SHAZAMReqHdlr:processChangeSHAZAMModel

SD SHAZAMControlModule.createSHAZAM SD

SHAZAMControlModule.changeModelType SD

SR1.5.2.1.9.11.

12.2.1

The system shall indicate to the user that

a TCP/IP port will be used when

communicating with the HWG-ER02a

SHAZAM.

HAR/SH

AZAM

Set SHAZAM

Configuration Settings

SHAZAMReqHdlr:processEditCommsConfig SD

CHART R8 Detailed Design Rev 2 8-152 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.9.11.

12.2.2

The system shall allow the user to

specify the IP address and port used to

communicate to the HWG-ER02a

SHAZAM.

HAR/SH

AZAM

Set TCPIP

Communication

Settings

SHAZAMReqHdlr:processEditCommsConfig SD

SR1.5.2.1.9.11.

12.2.5

The system shall allow the user to

specify the relay that is to be used on the

HWG-ER02a SHAZAM. (The device

has two relays, only one of which will be

used).

HAR/SH

AZAM

Configure HWG-ER02a

SHAZAM

GUIShazamClasses CD

SR1.5.2.1.9.11.

12.3

The system shall require that a

SHAZAM be offline before the model

can be changed for a SHAZAM that

already exists in the system.

HAR/SH

AZAM

Change SHAZAM

Model

SHAZAMReqHdlr:processChangeSHAZAMModel

SD SHAZAMPushConsumer:handleModelChanged

SD SHAZAMControlModule.changeModelType SD

SR1.5.2.1.9.11.

13

The system shall allow a suitably

privileged user to specify alert and

notification settings for a SHAZAM.

HAR/SH

AZAM

Set SHAZAM

Configuration

SHAZAMReqHdlr:processSetAlertAndNotification

Settings SD

SR1.5.2.1.9.11.

13.1

The system shall support setting a

responsible Center for a SHAZAM

which is to receive the Device Failure

Alert when the device goes into

hardware failure.

HAR/SH

AZAM

Set Alert and

Notification Settings

SHAZAMReqHdlr:processSetAlertAndNotification

Settings SD

SR1.5.2.1.9.11.

13.2

The system shall support setting a

responsible Center for a SHAZAM

which is to receive the Device Failure

Alert when the device goes into

communications failure.

HAR/SH

AZAM

Set Alert and

Notification Settings

SHAZAMReqHdlr:processSetAlertAndNotification

Settings SD

SR1.5.2.1.9.11.

13.3

The system shall support setting a

notification group to receive SHAZAM

communication failure notification

messages.

HAR/SH

AZAM

Set Alert and

Notification Settings

SHAZAMReqHdlr:processSetAlertAndNotification

Settings SD

SR1.5.2.1.9.11.

13.4

The system shall support setting a

notification group to receive SHAZAM

hardware failure notification messages.

HAR/SH

AZAM

Set Alert and

Notification Settings

SHAZAMReqHdlr:processSetAlertAndNotification

Settings SD

SR1.5.2.1.9.11.

13.5

The system shall support setting an

operations center or notification group to

"None" to disable the sending of alerts

and/or notifications.

HAR/SH

AZAM

Set Alert and

Notification Settings

SHAZAMReqHdlr:processSetAlertAndNotification

Settings SD

CHART R8 Detailed Design Rev 2 8-153 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.2.1.9.12 Add / Copy SHAZAM HAR/SH

AZAM

Add SHAZAM N/A (Heading)

SR1.5.2.1.9.12.

5

The system shall allow a suitably

privileged user to add an HWG-ER02a

SHAZAM.

HAR/SH

AZAM

Add SHAZAM SHAZAMReqHdlr:processAddSHAZAM SD

SHAZAMControlModule.createSHAZAM SD

SR1.5.2.10 The system shall allow the user with

appropriate rights to put equipment on-

line in CHART.

 N/A N/A (Existing)

SR1.5.2.10.2 The system shall allow a suitably

privileged user to set a HAR online.

HAR/SH

AZAM

Put HAR Online N/A (Existing)

SR1.5.2.10.2.14 The system shall allow a user with the

Maintain HAR or Manage Response

Plan user rights to initiate a poll of a

HAR device if the device is online and

the HAR model and communications

type supports polling.

HAR/SH

AZAM

Poll DR1500 HAR DR1500HARReqHdlr:processPollHARNow SD

SR1.5.3 PERFORM ROUTINE

MAINTENANCE. The system shall

allow the user with appropriate rights to

view the device status, and know why

it's not on-line (including the key trouble

ticket information) and know the

problem is being addressed. The system

shall also allow the user to take the

device offline of maintenance or other

adjustments including resetting the

controller. Suggestion/example to be

validated: e.g., integrate device

maintenance web pages with CHART.

 N/A N/A (Heading)

SR1.5.3.1 The system shall allow a suitably

privileged user to place a device in

maintenance mode.

 N/A N/A (Existing)

SR1.5.3.1.2 The system shall allow a suitably

privileged user to set a HAR to

maintenance mode.

HAR/SH

AZAM

Put HAR In

Maintenance Mode

Use Case Only

CHART R8 Detailed Design Rev 2 8-154 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.3.1.2.12 The system shall allow a user with the

Maintain HAR user right to initiate a

poll of a HAR device if the device is in

maintenance mode and the HAR model

and communications type supports

polling.

HAR/SH

AZAM

Poll DR1500 HAR SystemInterfaces/HARControl.cad

HARControlModule:pollHARS

DR1500HARReqHdlr:processPollHAR

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings HARContorlModule:ProcessPollResults SD

HISDR1500ProtocolHdlr:getHARVersionInformatio

n SD

HISDR1500ProtocolHdlr:getHARModeAndSubMod

e SD HISDR1500ProtocolHdlr:getTransmitterStatus

SD HISDR1500ProtocolHdlr:getTransmitterMode

SD HISDR1500ProtocolHdlr:getSystemStatus SD

HISDR1500ProtocolHdlr:parseLastCommandTimeS

tampFromResponse SD

HISDR1500ProtocolHdlr:getLastCmdTimeStampFr

omResponse SD

SR1.5.3.8 The system shall allow a suitably

privileged user to play a message from a

selected slot in the HAR controller.

HAR/SH

AZAM

View HAR Slot Usage Use Case Only

SR1.5.3.8.2 The system shall allow a suitably

privileged user to monitor (listen to) the

contents of a specified slot of an

independent HIS DR1500 HAR, if the

HAR is not offline, and the port type is

telephony.

HAR/SH

AZAM

View HAR Slot Usage Use Case Only

SR1.5.3.8.3 The system shall allow a suitably

privileged user to monitor (listen to) the

contents of a specified slot of an

individual constituent HAR of a

Synchronized HAR, if the constituent

HAR is not offline and the constituent

HAR supports monitoring.

HAR/SH

AZAM

View HAR Slot Usage Use Case Only

SR1.5.4 RESPOND TO EQUIPMENT/ DEVICE

OUTAGE. The system shall allow the

user with appropriate rights to notify

maintenance personnel of an equipment

outage that they have detected (or has

been brought to their attention).

 N/A N/A (Heading)

CHART R8 Detailed Design Rev 2 8-155 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.4.1 The system shall inform the operators of

a HAR failure.

HAR/SH

AZAM

N/A SystemInterfaces/HARControl.cad

HARControlModule:pollHARS

DR1500HARReqHdlr:processPollHAR

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings HARContorlModule:ProcessPollResults SD

HISDR1500ProtocolHdlr:getHARVersionInformatio

n SD

HISDR1500ProtocolHdlr:getHARModeAndSubMod

e SD HISDR1500ProtocolHdlr:getTransmitterStatus

SD HISDR1500ProtocolHdlr:getTransmitterMode

SD HISDR1500ProtocolHdlr:getSystemStatus SD

HISDR1500ProtocolHdlr:parseLastCommandTimeS

tampFromResponse SD

HISDR1500ProtocolHdlr:getLastCmdTimeStampFr

omResponse SD

SR1.5.4.1.2 The system shall inform operators of a

HAR hardware failure for a HIS

DR1500 HAR that uses TCP/IP

communications.

HAR/SH

AZAM

Poll DR1500 HAR SystemInterfaces/HARControl.cad

HARControlModule:pollHARS

DR1500HARReqHdlr:processPollHAR

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings

SR1.5.4.1.2.1 The system shall consider a HIS

DR1500 HAR hardware failed if its DC

voltage is below the minimum DC

voltage threshold as configured in

CHART for the HAR.

HAR/SH

AZAM

Poll DR1500 HAR Set

DR1500 Hardware

Failure Detection

Settings

SystemInterfaces/HARControlDR1500.cad

HISDR1500ProtocolHdlr:getStatus SD

HISDR1500ProtocolHdlr:getSystemStatus SD

SR1.5.4.1.2.4 The system shall consider a HIS

DR1500 HAR hardware failed if its

voltage standing wave ratio (VSWR) is

above the maximum threshold as

configured in CHART for the HAR.

HAR/SH

AZAM

Poll DR1500 HAR Set

DR1500 Hardware

Failure Detection

Settings

SystemInterfaces/HARControlDR1500.cad

HISDR1500ProtocolHdlr:getStatus SD

HISDR1500ProtocolHdlr:getTransmitterStatus SD

SR1.5.4.1.2.5 The system shall consider a HIS

DR1500 HAR hardware failed if its

status indicates that the power to the

HAR is off.

HAR/SH

AZAM

Poll DR1500 HAR SystemInterfaces/HARControlDR1500.cad

HISDR1500ProtocolHdlr:getStatus SD

HISDR1500ProtocolHdlr:getSystemStatus SD

SR1.5.4.7 The system shall generate a Device

Failure Alert for all DMSs, TSSs, HARs,

and SHAZAMs capable of reporting that

they are experiencing a hardware failure

HAR/SH

AZAM

N/A SystemInterfaces/AlertManagement.cad

CHART R8 Detailed Design Rev 2 8-156 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.4.8 The system shall inform the operators of

a SHAZAM device failure.

HAR/SH

AZAM

N/A N/A (General)

SR1.5.4.8.1 The system shall inform the operators of

a SHAZAM communications failure.

HAR/SH

AZAM

Reset SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

AlertAndNotificationHelper.notifyAndAlert SD

SR1.5.4.8.2 The system shall inform operators of a

SHAZAM hardware failure for a HWG-

ER02a SHAZAM.

HAR/SH

AZAM

Reset HWGER02a

SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

AlertAndNotificationHelper.notifyAndAlert SD

SR1.5.4.8.2.1 The system shall consider a HWG-

ER02a SHAZAM hardware failed if

after setting the state of its relay the

device does not indicate the relay is in

the commanded state. (For example, if

the system commands the device to close

Relay 1 and then queries Relay 1 and it

is open, the system shall consider the

device failed.)

HAR/SH

AZAM

Reset HWGER02a

SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

SHAZAMControlModule.setBeaconsState SD

AlertAndNotificationHelper.notifyAndAlert SD

SR1.5.4.9 The system shall support automatic

generation of a Device Failure

Notification for all DMS, TSS, HAR,

and SHAZAM devices that support

being polled for status.

HAR/SH

AZAM

N/A N/A (General)

SR1.5.4.9.1 The system shall send a notification to

the communication failure notification

group configured for the device (if any)

when the device transitions to a

communication failed status.

HAR/SH

AZAM

Poll DR1500 HAR

Reset SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

AlertAndNotificationHelper.notifyAndAlert SD

SR1.5.4.9.2 The system shall send a notification to

the communication failure notification

group configured for the device (if any)

when a HAR or SHAZAM device

transitions from a communication failed

status to a status of OK.

HAR/SH

AZAM

Poll DR1500 HAR

Reset SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

SHAZAMControlModule.handleOpStatus SD

CHART R8 Detailed Design Rev 2 8-157 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.4.9.3 The system shall send a notification to

the communication failure notification

group configured for the device (if any)

when a HAR or SHAZAM device

transitions from a communication failed

status to a status of hardware failed if the

communication failure notification

group configured for the device is

different than the hardware failure

notification group configured for the

device. (This prevents duplicate

notifications; if the groups are different,

that means when the device transitions to

hardware failed it is no longer the

communication failure group's

responsibility. If the groups are the

same, the group will receive the

hardware failure notification due to

requirement SR1.5.4.9.4.)

HAR/SH

AZAM

Poll DR1500 HAR

Reset SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

SHAZAMControlModule.handleOpStatus SD

AlertAndNotificationHelper.notifyAndAlert SD

SR1.5.4.9.4 The system shall send a notification to

the hardware failure notification group

configured for the device (if any) when

the device transitions to a hardware

failed status.

HAR/SH

AZAM

Poll DR1500 HAR

Reset SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

SHAZAMControlModule.handleOpStatus SD

AlertAndNotificationHelper.notifyAndAlert SD

SR1.5.4.9.5 The system shall send a notification to

the hardware failure notification group

configured for the device (if any) when a

HAR or SHAZAM device transitions

from a hardware failed status to a status

of OK.

HAR/SH

AZAM

Poll DR1500 HAR

Reset SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

SHAZAMControlModule.handleOpStatus SD

AlertAndNotificationHelper.notifyAndAlert SD

CHART R8 Detailed Design Rev 2 8-158 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.4.9.6 The system shall send a notification to

the hardware failure notification group

configured for the device (if any) when a

HAR or SHAZAM device transitions

from a hardware failed status to a status

of communication failed if the hardware

failure notification group configured for

the device is different than the

communication failure notification

group configured for the device. (This

prevents duplicate notifications; if the

groups are different, then when the

device transitions to communication

failed it is no longer the recipient's

responsibility. If the groups are the

same, the recipients will receive the

communication failure notification due

to preceding requirements.)

HAR/SH

AZAM

Poll DR1500 HAR

Reset SHAZAM to Last

Known State

SHAZAMControlModule.refreshImpl SD

SHAZAMControlModule.handleOpStatus SD

SHAZAMControlModule.setBeaconsState SD

AlertAndNotificationHelper.notifyAndAlert SD

SR1.5.5 VIEW DEVICE LISTS N/A N/A (Heading)

SR1.5.5.2 The system shall allow the user to view

the list of HARs that exist in the system.

HAR/SH

AZAM

View HAR List Use Case Only

SR1.5.5.2.1 The system shall allow the user to view

detailed data for each HAR in the list.

HAR/SH

AZAM

View HAR List Use Case Only

SR1.5.5.2.1.10 The detailed data displayed for a HAR

shall include the Port Managers assigned

to a HAR, if the HAR is configured to

use a Telephony port for

communications.

HAR/SH

AZAM

View HAR List Use Case Only

SR1.5.5.3 The system shall allow the user to view

the list of SHAZAMs that exist in the

system.

HAR/SH

AZAM

View SHAZAM List Use Case Only

SR1.5.5.3.1 The system shall allow the user to view

detailed data for each SHAZAM in the

list

HAR/SH

AZAM

View SHAZAM List Use Case Only

SR1.5.5.3.1.10 The detailed data displayed for a

SHAZAM shall include the Port

Managers assigned to a SHAZAM if the

SHAZAM is configured to use a

HAR/SH

AZAM

View SHAZAM List Use Case Only

CHART R8 Detailed Design Rev 2 8-159 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

Telephony port for communications.

SR1.5.7 VIEW DEVICE DETAILS N/A Use Case Only

SR1.5.7.2 View HAR Details HAR/SH

AZAM

N/A Use Case Only

SR1.5.7.2.1 The system shall allow a suitably

privileged user to view the configuration

and status information of a HAR in the

system.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.4 The system shall show the operational

status of the HAR.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.4.1 Operational status shall indicate whether

the HAR is online, in maintenance

mode, or offline.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.4.2 Operational status shall indicate if the

HAR has a communications failure.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.4.3 Operational status shall indicate whether

the HAR is hardware failed.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.9 The system shall show the transmitter

state of the HAR. (On/Off)

HAR/SH

AZAM

View HAR Details SystemInterfaces/HARControlDR1500.cad

HISDR1500ProtocolHdlr:getTransmitterStatus SD

SR1.5.7.2.1.16 The system shall display the phone

number for the HAR controller if the

HAR is configured to use a Telephony

port for communications.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.18 The system shall display the IP address

and port if the HAR is configured to use

TCP/IP for communications.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.20 The system shall display the hardware

failure thresholds for a HIS DR1500

HAR when it is set to use TCP/IP

communications.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.20.

1

The system shall display the minimum

voltage threshold for a HIS DR1500

HAR set to use TCP/IP communications.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.20.

4

The system shall display the maximum

voltage standing wave ratio (VSWR)

threshold for a HIS DR1500 HAR that is

set to use TCP/IP communications.

HAR/SH

AZAM

View HAR Details Use Case Only

CHART R8 Detailed Design Rev 2 8-160 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR1.5.7.2.1.21 The system shall display model specific

status information for a HIS DR1500

HAR that uses TCP/IP communications.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.21.

1

The system shall display a timestamp for

the last time a status mismatch was

detected (if any) for a HIS DR1500

HAR. (A status mismatch is when the

system queries the status of the HAR

and finds it does not match the status as

commanded by the system.)

HAR/SH

AZAM

View HAR Details HISDR1500ProtocolHdlr:getLastCmdTimeStamp

SD

AP55AndDR1500HARCommand:parseLastComma

ndTimeStampFromResponse SD

HARProtocolsPkg/HARProtocolsPkg.cad

SR1.5.7.2.1.21.

2

The system shall display the power

status (on/off) for a HIS DR1500 HAR.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.21.

3

The system shall display the DC voltage

of a HIS DR1500 HAR.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.21.

4

The system shall display the broadcast

monitor percent of full scale for a HIS

DR1500 HAR.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.21.

5

The system shall display the mode of a

HIS DR1500 HAR. (Values can include

Off, Play List, Alert, Live, Aux, and

Other)

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.21.

6

The system shall display the sub-mode

of a HIS DR1500 HAR. (e.g.

Synchronized, Unsynchronized)

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.21.

7

The system shall display the transmitter

status of a HIS DR1500 HAR. (Set

Power, Forward Power, Reflected

Power, Voltage Standing Wave Ratio

(VSWR), and Modulation)

HAR/SH

AZAM

View HAR Details SystemInterfaces/HARControlDR1500.cad

HARProtocolsPkg/HARProtocolsPkg.cad

HISDR150ProtocolHdlr:getTransmitterStatus SD

SR1.5.7.2.1.21.

8

The system shall display the version

information for the digital

communications console (DCC) of a

HIS DR1500 HAR.

HAR/SH

AZAM

View HAR Details HISDR1500ProtocolHdlr:getHARVersionInformatio

n SD

SR1.5.7.2.1.21.

9

The system shall display the version

information for the HAR module of a

HIS DR1500 HAR. (Software version,

build, EPROM checksum.)

HAR/SH

AZAM

View HAR Details HISDR1500ProtocolHdlr:getHARVersionInformatio

n SD

SR1.5.7.2.1.21. The system shall display the timestamp HAR/SH View HAR Details AP55AndDR1500HARCommand:parseLastComma

CHART R8 Detailed Design Rev 2 8-161 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

10 from a HIS DR1500 HAR. (This is the

timestamp of the last change to the HAR

state as reported by the HAR.)

AZAM ndTimeStampFromResponse SD

HISDR1500ProtocolHdlr:getLastCmdTimeStamp

SR1.5.7.2.1.21.

11

The system shall display the sync mode

from the HIS DR1500 HAR. (The sync

mode will be ON, OFF, or N/A, where

N/A is used if the HAR sub-mode is not

synchronized).

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.22 The system shall display an indicator to

show if automatic polling is enabled for

the HAR if the HAR is set to use TCP/IP

for communications.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.22.

1

The system shall display the polling

interval if polling is enabled.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.2.1.23 The system shall display the last time the

Setup HAR command was successfully

executed by the system.

HAR/SH

AZAM

View HAR Details Use Case Only

SR1.5.7.6 View SHAZAM Details N/A N/A (Heading)

SR1.5.7.6.2 The system shall allow a suitably

privileged user to view the configuration

and status information of a SHAZAM in

the system.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.1 The system shall display the name of the

SHAZAM.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.2 The system shall display the model of

the SHAZAM.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.3 The system shall display the static

message displayed on the SHAZAM.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.4 The system shall display the owning

organization of the SHAZAM.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.5 The system shall display the maintaining

organization of the SHAZAM.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.6 The system shall display the network

connection site of the SHAZAM.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.7 The system shall display the location of

the SHAZAM.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.8 The system shall display the

communications settings for the

HAR/SH

AZAM

View SHAZAM Details Use Case Only

CHART R8 Detailed Design Rev 2 8-162 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SHAZAM.

SR1.5.7.6.2.8.1 The system shall display the

communications port type used to

communicate with the SHAZAM.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.8.2 The system shall display the Telephony

related communications settings when

the SHAZAM is configured to use a

Telephony port for communications.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.8.2.

1

The system shall display the default

phone number for the SHAZAM when

the SHAZAM is configured to use a

Telephony port for communications.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.8.2.

2

The system shall display the access code

for the SHAZAM when the SHAZAM is

configured to use a Telephony port for

communications.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.8.2.

3

The system shall display the port

manager timeout for the SHAZAM

when the SHAZAM is configured to use

a Telephony port for communications.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.8.2.

4

The system shall display the port

managers and associated phone numbers

for the SHAZAM when the SHAZAM is

configured to use a Telephony port for

communications.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.8.3 The system shall display the TCP/IP

related communications settings when

the SHAZAM is configured to use

TCP/IP communications.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.8.3.

1

The system shall display the IP Address

and Port for the SHAZAM when the

SHAZAM is configured to use TCP/IP

communications.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.9 The system shall display the auto-refresh

settings for the SHAZAM.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.9.1 The system shall indicate if auto-refresh

is enabled for the SHAZAM.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR1.5.7.6.2.9.2 The system shall display the auto-refresh HAR/SH View SHAZAM Details Use Case Only

CHART R8 Detailed Design Rev 2 8-163 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

rate if auto-refresh is enabled for the

SHAZAM.

AZAM

SR1.5.7.6.2.10 The system shall display the relay being

used on a HWG-ER02a SHAZAM.

(Relay 1 or Relay 2)

HAR/SH

AZAM

View SHAZAM Details Use Case Only

SR7 MANAGE CHART PERFORMANCE.

This process allows CHART managers

and others to assess and enhance the

effectiveness of CHART by reviewing

and evaluating the performance of

CHART operations, event management,

traffic flow management, and devices

and software performance. This process

also includes simulation of event

management and traffic management

based on historical data.

 N/A N/A (Heading)

SR7.3 MANAGE AND MEASURE DEVICE

PERFORMANCE

 N/A N/A (Heading)

SR7.3.2 CHECK AND VALIDATE SYSTEM

AND STATUS. The system shall

initiate the capture of data from polling

for devices and hardware.

 N/A N/A (Heading)

SR7.3.2.1 The system shall monitor and ping for

system services at pre-defined

periodicity.

 N/A N/A (General)

SR7.3.2.1.1 The system shall provide a mechanism

to poll devices for status on a

configurable interval basis.

 N/A N/A (General)

SR7.3.2.1.1.4 The system shall support polling of HAR

devices.

HAR/SH

AZAM

Poll DR1500 HAR SystemInterfaces/HARControl.cad

HARControlModule:pollHARS

DR1500HARReqHdlr:processPollHAR

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings

SR7.3.2.1.1.4.1 Polling of HAR devices shall be

supported for HARs configured to use

TCP/IP communications.

HAR/SH

AZAM

Poll DR1500 HAR SystemInterfaces/HARControl.cad

HARControlModule:pollHARS

DR1500HARReqHdlr:processPollHAR

DR1500HARReqHdlr:processEditDR1500HARCtrl

Settings

CHART R8 Detailed Design Rev 2 8-164 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SR7.3.2.1.1.4.2 The system shall verify that the message

currently being broadcast by a HAR is

the message the system expects to be

broadcast on the HAR for HAR devices

supporting the appropriate level of status

information.

HAR/SH

AZAM

Maintain HAR State DR1500HARReqHdlr:processPollHAR

SR7.3.2.1.1.5 The system shall support the polling of

SHAZAM devices.

HAR/SH

AZAM

Reset SHAZAM to Last

Known State Reset

HWG ER02a

SHAZAM to Last

Known State

SHAZAMControlModule.RefreshSHAZAMInBackg

round SD SHAZAMControlModule.refreshImpl SD

SHAZAMControlModule.setBeaconsState SD

SR7.3.2.1.1.5.1 Polling of SHAZAM devices shall be

supported for SHAZAM models that

provide a means to query the device

status.

HAR/SH

AZAM

Reset SHAZAM to Last

Known State Reset

HWG ER02a

SHAZAM to Last

Known State

SHAZAMControlModule.RefreshSHAZAMInBackg

round SD SHAZAMControlModule.refreshImpl SD

SHAZAMControlModule.setBeaconsState SD

SR9 SYSTEM MAINTAINABILITY,

AVAILABILITY, SECURITY, AND

DATA DISTRIBUTION

 N/A N/A (Heading)

SR9.4 Data Distribution N/A N/A (Heading)

SR9.4.2 The system shall protect certain

information maintained in the system by

limiting a user's access to /view of that

information based on the user’s

functional rights.

 N/A N/A (General)

SR9.4.2.8 The system shall allow a suitably

privileged user to view sensitive

configuration data associated with a

HAR (View HAR Sensitive Config

functional right).

HAR/SH

AZAM

View HAR Details Use Case Only

SR9.4.2.8.1 Sensitive configuration data for a HAR

includes: Default Phone Number, Access

Code, Port Manager Connection

Timeout, Port Type, per Port Manager

phone numbers, IP Address and Port.

HAR/SH

AZAM

View HAR Details Use Case Only

SR9.4.2.9 The system shall allow a suitably

privileged user to view sensitive

configuration data associated with a

HAR/SH

AZAM

View SHAZAM Details Use Case Only

CHART R8 Detailed Design Rev 2 8-165 08/01/2011

Tag Requirement Feature Use Cases Other Design Elements

SHAZAM (View HAR Sensitive Config

functional right.)

SR9.4.2.9.1 Sensitive configuration data for a

SHAZAM includes: Default Phone

Number, Access Code, Port Manager

Connection Timeout, Port Type, per Port

Manager phone numbers, IP Address

and Port.

HAR/SH

AZAM

View SHAZAM Details Use Case Only

CHART R8 Detailed Design Rev 2 9-1 08/01/2011

9Acronyms/Glossary

Alert A feature of the CHART system used to alert operators of important

information or events via a panel in their GUI and audible messages.

Broadcast Monitor Percent A measurement provided by the DR1500 HAR that indicates the output level

from the recorder component to the radio component. A typical value is

80%.

DCC Digital Communication Controller, a module that can be added to a DR1500

HAR to allow it to be controlled via TCP/IP

Firmware The fixed program

GUI Graphical User Interface; the part of the CHART system accessed via a web

browser to provide users access to the system.

HAR Highway Advisory Radio

IP Internet Protocol, the method (or protocol) by which data is sent from one

computer to another on the Internet.

Modulation Amplitude Modulation (AM) is a technique used in electronic

communication that works by varying the strength of the transmitter signal

in relation to the information being sent.

Notification A feature of the CHART system used to notify groups or individuals of

important information or events. This is implemented via a third party

notification engine named “!Attention” and the notifications are typically

sent to end users as e-mail.

Relay An electrically operated switch. In the context of a SHAZAM, it is used to

switch the beacons on or off.

SHAZAM A highway sign that contains beacons that can be activated to indicate that a

message is active on a HAR. Typically the face of the sign contains text

such as “Tune Radio To …”

Synchronized HAR A HAR that is actually a collection of two or more HARs, known as

constituent HARs, that are operated as if they are a single HAR. A message

set on a Synchronized HAR is set on each of its constituents, and the

constituents are set in a mode that causes them to synchronize their

broadcast so they are broadcasting the message at exactly the same time.

TCP Transmission Control Protocol, a protocol used as a layer on top of IP to

send data as message units from one computer to another on the Internet.

VSWR Voltage Standing Wave Ratio, a measurement from a radio transmitter of the

impedance mismatch between the transmission line and its load. The higher

the VSWR, the greater the mismatch.

